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Abstract—In this paper, a formal analysis of a security
protocol in the field of wireless sensor networks is presented.
Sensor Network Encryption Protocol (SNEP) describes basic
primitives for providing confidentiality, authentication between
two nodes, data integrity and weak message freshness in a
wireless sensor network. It was designed as base component
of Security Protocols for Sensor Networks (SPINS). SNEP is
modelled in two scenarios using the high-level formal language
HLPSL, and verified using the model checking tool Avispa,
where two main security properties are checked: authenticity and
confidentiality of relevant messages components. The first case
is the communication between the base station and networks
nodes in order to retrieve node confidential information. The
second case is a key distribution protocol in a sensor network
using SNEP for securing messages. As a result of this analysis,
one attack have been found: a false request message from an
intruder. In that case, the intruder impersonates the base station
and creates false requests. This way, the intruder may obtain
confidential data from a node in the network. A solution to this
attack is proposed in the paper.

Index Terms—Wireless sensor, model checking, security pro-
tocols, avispa toolbox, SNEP

I. INTRODUCTION

Security has become a challenge in wireless sensor net-
works. Low capabilities of devices, in terms of computational
power and energy consumption, make difficult using tradi-
tional security protocols.

Two main problems related to security protocols arise.
Firstly, the overload that security protocols introduce in mes-
sages should be reduced at a minimum; every bit the sensor
sends consumes energy and, consequently, reduces the life of
the device. Secondly, low computational power implies that
special cryptographic algorithms that require less powerful
processors need to be used. The combination of both problems
lead us to a situation where new approaches or solutions
to security protocols need to be considered. These new ap-
proaches take into account basically two main goals: reduce
the overhead that protocol imposes to messages, and provide
reasonable protection while limiting use of resources.

This work has been supported by the spanish government with the project
”Application of Formal Methods to Web Services”, with reference TIN2006-
15578-C02-02, and the JCCM regional project “Application of formal methods
to the design and analysis of Web Services and e-commerce ” (PAC06-0008-
6995 )

In order to design a secure network, several aspects have
to be considered [1]: Key establishment and trust setup,
secrecy and authentication, and privacy. Key establishment
can be considered the base of the system; a secure and
efficient key distribution mechanism is needed for large scale
sensor networks. Once every node has its own keys, these
are used to authenticate and encrypt (if needed) the messages
they exchange. Several protocols have been proposed in the
literature related to authentication and privacy [2], [3], and key
distribution [4], [5], [6].

In this paper, we have focus in one of these protocols: SNEP
[7]. A brief overview of this protocol is given in Section III.
SNEP describes basic primitives for providing confidentiality,
authentication between two nodes, data integrity and weak
message freshness in a wireless sensor network.

The paper is organised as follows. In Section II an introduc-
tion of formal methods for the analysis of security protocols
is presented. In Section III a brief overview of SNEP is given.
Section IV is devoted to the formal verification of SNEP,
where two scenarios have been considered depending on the
key distribution mechanism used. Finally in Section V we give
our conclusions and future work.

II. MODEL CHECKING FOR THE ANALYSIS OF SECURITY
PROTOCOLS

As new security protocols are designed, new techniques
have also been developed to model a system and check
properties on it. One of the most promising techniques in this
line is model checking. Model checking [8] is a technique
based on formal methods for verifying finite-state-concurrent
systems, and has been implemented in several tools. One of
the main advantages of this technique is that it is automatic
and allows us to see if a system works as expected. In case
the system does not work properly, the model checking tool
provides a trace that leads to the source of the error.

Model checking has become a key point in the design
of concurrent and distributed system because it allows us to
ensure the correctness of a design at the earliest stage possible.
Model checking has two main advantages over two classical
techniques such as simulation and testing: i) we do not need
to build a prototype of the system, and ii) we are able to verify



the system against every single execution trace. The latter is
very important because using simulation or testing we can
only find errors, but we cannot ensure that the whole system
behaves as expected (some errors may remain hidden until the
system is in production stage).

Some general purpose model checking tools have been
developed by different research groups: Spin, UPPAAL, Murφ,
FRD2.0, etc. These tools allow us to verify not only the
functional properties of a system (e.g. Spin), but also the per-
formance of a real-time system (e.g. UPPAAL). Although we
can use these general purpose tools in order to verify security
protocols, we consider that it is preferable (and more intuitive)
to use a tool devoted to the verification of security protocols.
Among these tools we can find Casper/FDR2 toolbox [9] and
AVISPA [10].

The use of model checking tools to verify security protocols
has been successful in the past in different areas such as Web
Services [11], [12], [13], wireless security protocols [14], or
Transport Layer security protocols [15], [16].

a) AVISPA toolbox: As it is mentioned in the previ-
ous section, AVISPA provides a high-level formal language
HLPSL [17] for specifying protocols and their security proper-
ties. Once we have specified the model of the system, AVISPA
translates it into an intermediate format IF. This is the input of
several backends that are integrated into AVISPA framework:
SATMC, OFMC, Cl-Atse and TA4SP. Besides, only one model
is specified although it can be analysed with the four backends.
AVISPA also offers a graphical interface SPAN [18] that helps
in the specifying task.

In AVISPA we find two kind of roles; basic roles and
composed roles. A basic role describes a protocol participant
initial knowledge, its initial state and a set of transitions that
describes the behaviour of the participant. Transitions are a
more expresive notation that A-B notation. It allows to express
control flow elements as if-then-else structures, loops, etc. The
basic roles can be composed in order to describe protocol
sessions, which are composed roles.

Security in wireless networks is not an easy task due to its
broadcast nature. An intruder can overhear, intercept messages,
inject new messages or modify messages in transit. This kind
of intruder is called Dolev-Yao Intruder [19]. The intruder
implemented in AVISPA is a Dolev-Yao intruder, which is
appropriate to analyse wireless security protocols.

b) Notation: We are going to use the follow-
ing notation to describe the protocols and the models:

A,B, Ni communicating nodes
BS The base station
SKab Symmetric key shared between nodes A

and B
Km Master key shared between the node and

the base station
Kenc Encryption key derived from the master

key
Kmac MAC computing key derived from the

master key
Ca−b Shared counter between A and B
NA Nonce generated by A
MAC(M) Message Authentication Code function

computed over message M
F (M) One-way hash function computed over

message M
{M}K Message M encrypted with key K
M1 ⊕M2 XOR of messages M1 and M2

Chan!M Sending message M on channel Chan
Chan?M Receiving message M on channel Chan

III. SENSOR NETWORK ENCRYPTION PROTOCOL: SNEP

SNEP is one of the two subprotocols that composed Se-
curity Protocols for Sensor Networks (SPINS). SPINS was
designed for key distribution in sensor networks using SNEP
and µTESLA as basic block component. In particular, SNEP
describes basic primitives for providing confidentiality, authen-
tication between two nodes, data integrity and weak message
freshness. µTESLA is an adaptation of TESLA protocol for
sensor networks. In this paper, we only focus on SNEP.

To fulfill semantic confidentiality 1, instead of initial vectors,
SNEP uses shared counters. Every plain text block is ciphered
with a counter usign count mode (CTR) encryption algorithm.
The receiver and sender updates the shared counter once they
just have received/sent a cipher block. Thus, it is not necessary
to include the counter in the message. These shared counters
offer a particial message order and a weak message freshness.

Each message includes a Message Authentication Code
(MAC). It is computed with CBC-MAC algorithm over the
ciphered data. It is computed once for each package. When
an agent receives a message, it computes the message MAC
and compares with the received MAC. If they are equal, the
message is accepted. The MAC allows endpoints to prevent
modifications of the message in transit. It also allows them to
authenticate data origin because it is ciphered with a shared
symmetric key between sender and receiver.

A message M between two nodes S and R secured with
SNEP is the following:

S → R : {Ctr}Kenc ⊕M, MAC(Kmac, {{Ctr}Kenc ⊕M})

Kenc and Kmac are derived keys from a master key Km.
This master key is shared with the base station and it is stored
in the node before its deployment. The rest of keys are derived
from the master key by means of a pseudo-random function

1Semantic security means that if the same plain-text is ciphered twice, the
two resulting ciphetexts are different



fk(x) = MAC(k, x). If two nodes detect that the keys are
compromised, they must generate a new pair.

IV. VERIFICATION OF SNEP

We have considered two different configurations of SNEP
on the same network configuration (see fig. 1), depending on
the kind and the situation of the nodes that communicate with
each other:
• Case BS-N: Request from the base node to a normal node.
• Case N-N: Key distribution between two nodes.
As is evident in fig. 1, the base station is the main gateway

for nodes to communicate with outside world. Consequently,
comprimising the base station means comprimising the whole
network. Thus, the base station is a trusted component in the
network. It is assumed it can not be impersonate. It is also
assumed that the network is in a stable phase. The nodes do
not dynamically connect to the network or they dynamically
disconnect from the network. This assumption simplifies the
analysis and it abstracts away the routing problems.

BS

N1 N3N2

Figure 1. Sensor network for cases A and B

A. Case Base Station → Node

In this case, we analyse a request from the base station to
the nodes. The nodes response to this request with relevant
information.

As we mentioned in a previous section, SNEP only
guarantees weak freshness. But, with this kind of freshness,
there is not way to determine if a received message is
generated as response of a previous event. Thus, SPINS
propose the following protocol in order to fulfill strong
freshness:

1. BS → Ni : BS.Ni.Nonce.Msg1

2. Ni → BS : {Ctr}Kenc ⊕Msg2

{MAC({Ctr}Kenc ⊕Msg2.Nonce.Ni.BS)}Kmac

Where Kenc = F (Km, 0) and Kmac = F (Km, 1). Each
node has a different value for Km. The base estation BS has a
list of pairs node Ni and a master key Km. The base estation
selects a node from its node list and sends an information
request. In this information request it includes a nonce Nonce
as challenge and proof of freshness for the intended node.
This nonce is included in the response MAC code. The fig. 2
represents the diagram transitions for the node and the base
station roles.

The properties we have to analyse are the following:
• Authentication of Nonce, Msg1 and Msg2 , i.e., the

node Ni and the base station BS share the same value
for Nonce, Msg1 and Msg2 and both execute the same
session of the protocol. This property allows us to proof

that bilateral authentication is achieved by using the
MAC, and the integrity of the message is guarantied.

• Confidentiality of Msg2, i.e.,Msg2 is a secret value
shared between Ni and BS, and they are not known by
an intruder or third parties.

As the first message is not secure, there is the following
attack:

1. IBS → Ni : BS.Ni.Noncefalse.Msgfalse

2. Ni → BS : {Ctr}Kenc ⊕Msg2.
{MAC({Ctr}Kenc ⊕Msg2.Nonce.Ni.BS)}Kmac

The intruder creates a false request for a node. This message
does not include any authentication information. Thus, the
node believes that the message has been sent by the base
station. The node responses the intruder request. The intruder
cannot learn the value of Msg2 because it has not learned the
value of Km. Even if the intruder captures another node, the
value of Km for node Ni is still secret. But, the attack implies
resource and bandwith consumptions.

This attack can be prevent computing a MAC over the first
message:

1. BS → Ni : BS.Ni.Nonce.Msg1.
{MAC(BS.Ni.Nonce.Msg1)}Kmac

2. Ni → BS : {Ci}Kenc ⊕Msg2.
{MAC({Ci}Kenc ⊕Msg2.Nonce.Ni.BS)}Kmac

AVISPA does not report about any attack in this version of
the protocol.

B. Case Node → Node

A common approach for key distribution in networks
is using asymmetric key protocols in order to exchange a
shared symmetric key. In sensor networks, this approach is
not feasible due to its resource consumption. Consequently,
the nodes can only afford symmetric key algorithms. SPINS
propose a key distribution solution based on base station
intervention. The A-B notation for this protocol is the
following:

1. A → B : NA.A.B
2. B → BS : NA.NB .A.B{MAC(NA.NB .A.B)}Kmac

3. BS → A : {Cbs−a}Kenc ⊕ Skab.
{MAC({Cbs−a}Kenc ⊕ Skab.Na.B)}Kmac

4. BS → B : {Cbs−b}Kenc ⊕ Skab.
{MAC({Cbs−b}Kenc ⊕ Skab.Nb.A)}Kmac

5. A → B : Msg1.Nc{MAC(Msg1.Nc)}F (Skab,1)

6. B → A : {Ca−b}F (Skab,0) ⊕Msg2.
{MAC({Ca−b}F (Skab,0) ⊕ Skab.Msg2.Nc)}F (Skab,1)

The node A would like to share a key with the node B.
Initially, both nodes do not share any secret. But both nodes
share a key with the base station. Consequently, the base
station should participate. The base station computes the new
shared key and distributes the key to the nodes. Most of the
computation takes place in the base station, so the nodes save
resources.

The fig. 3 represents our model. There are two transition
diagrams; one represents the node role and the other one for
the base station. A node can plays the part of node A or node



Node

0 1
1: RCV?BS.Ni.Nonce.Msg1

2: SND!{Ctr}Kenc ⊕Msg2.{MAC({Ctr}Kenc ⊕Msg2.Nonce.Ni.BS)}Kmac ∧Ctr := 1

Base Station

0 1 2

RCV?start ∧

in(Ni, Network Nodes)

1: SND!BS.Ni.Nonce.Msg1 ∧

Ctr := 1

2: RCV?{Ctr}Kenc ⊕Msg2.{MAC({Ctr}Kenc ⊕Msg2.Nonce.Ni.BS)}Kmac

Figure 2. Model diagram

B, but once it choose one it can not perform the other part
until the protocol is finished.

The properties we have to analyse are the following:
• Authentication of NA and NB , i.e., the node A, the node

B and the base station BS share the same value for NA

and NB and all of them execute the same session of
the protocol. This property allows us to proof that there
are not replays attacks and the freshness of messages is
guarantee.

• Authentication of SKab, i.e., the node A, the node B and
the base station BS share the same value for NA, NB

and SKab and all of them execute the same session of
the protocol. This property allows us to proof that node A
and node B completes a bilateral authentication through
the base station BS because they share the same key
SKab.

• Authentication of Msg1 and Msg2, i.e., the node A and
the node B share the same value for Msg1 and Msg2

and both execute the same session of the protocol. This
property allows us to proof that bilateral authentication
is achieved by using the MAC, and the integrity of the
message is guarantied.

• Confidentiality of Msg2, i.e.,Msg2 is a secret value
shared between A and B, and they are not known by
an intruder or third parties.

• Confidentiality SKab, i.e., SKab is a secret value shared
among A, B and BS, and they are not known by an
intruder or third parties.

In this case AVISPA does not report about any attack.

V. CONCLUSION

In this paper we have presented a formal approach to the
security analysis of wireless sensor networks by means of a
model checking tool called Avispa.

The first case analyses the communication between the base
station and the node. We have found an attack which leads re-
source and bandwith consumption. We have propose a solution
to this attack. We can conclude that this amended version of
the protocol guarantees the strong freshness, authentication,

message integrity and confidentiality of the messages under
our assumptions.

The second case is a key distribution protocol between two
nodes. This protocol allows two nodes to establish a shared
symmetric key through the base station. We have not found
any attack on the protocol. So we can conclude is a secure
solution for key distribution under our assumptions.

Our future work is concerned with extending our analysis
to other security protocols for wireless sensor networks such
as TinySec[2], µTESLA (defined in [3]), and MiniSec [20].
Also we are interested in the analysis of TinySec with other
distribution key protocols such as LEAP+[21] and TinyPK
[22].
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