
Case study: Online auction service

The case study concerns a typical online auction process, which consists of three
participants: the online auction system and two buyers, A1 and A2. A seller owes
a good that wants to sell to the highest possible price. Therefore, he introduces
the product in an auction system for a certain time. Then, buyers (or bidders)
may place bids for the product and, when time runs out, the highest bid wins.
In our case, we suppose the resource is the product for auction, the value of
the resource property is the current price (only the auction system can mod-
ify it), the resource subscribers will be the buyers, their subscription conditions
hold when the current product value is higher than their bid, and the resource
lifetime will be the time in which the auction is active. Finally, when the life-
time has expired, the auction system sends a notification to the buyers with the
result of the process (the identifier of the winner, vw) and, after that, all the
processes finish. Let us consider the choreography C = (Osys ,O1 ,O2), where
Oi = (PLi ,Vari ,Ai ,Af i

,Aei
), i=1,2, Varsys = {vw , v1 , v2 , vEPR, at , t}, Var1 =

{at1 , v1 , vw1
}, Var2 = {at2 , v2 , vw2

}, Af 1
= exit , andAf 2

= exit . Variable vEPR

serves to temporarily store the value of the resource property before being sent;
v1, v2, vw , vw1

, vw2
are variables used for the interaction among participants,

and, finally, at, at1 and at2 are used to control the period of time in which the
auction is active. In this example, we consider a period of 10 time units. Suppose
s0 sys

, s0 1
and s0 2

are the initial states of Osys, O1 and O2, respectively, and all
the variables are initially 0:

Asys = assign(10 , at); createResource(EPR, 25 , 11 ,Anot);
while(actualTime() <= at ,Abid)

A1 = wait(1 , 1); subscribe(O1 ,EPR,EPR >= 0 ,Acond1
);

invoke(pl1 , auction time1 , at1); reply(pl1 , auction time1 , at1);
while(actualTime() <= at1 ,Abid1

); receive(pl3, bid finish1, vw1, empty)
A2 = wait(1 , 1); subscribe(O2 ,EPR,EPR >= 0 ,Acond2

);
invoke(pl2 , auction time2 , at2); reply(pl2 , auction time2 , at2);
while(actualTime() <= at2 ,Abid2

); receive(pl4, bid finish2, vw2, empty)
Anot = ((invoke(pl3 , bid finish1 , vw)||invoke(pl4 , bid finish2 , vw))
Abid = getprop(EPR, vEPR); pick(

(pl1 , auction time1 , t , reply(pl1 , auction time1 , at)),
(pl2 , auction time2 , t , reply(pl2 , auction time2 , at)),
(pl1 , cmp, v1 ,while(v1 > vEPR, assign(v1 , vEPR);

setProp(EPR, vEPR); assign(1 , vw))),
(pl2 , cmp, v2 ,while(v2 > vEPR, assign(v2 , vEPR);

setProp(EPR, vEPR); assign(2 , vw))), empty , 1)
Acond1

= getProp(EPR, vEPR); invoke(pl1 , bid up1 , vEPR)
Acond2

= getProp(EPR, vEPR); invoke(pl2 , bid up2 , vEPR)
Abid1

= receive(pl1 , bid up1 , v1); assign(v1 + random(), v1);
invoke(pl1 , cmp, v1); subscribe(O1 ,EPR,EPR > v1 ,Acond1

);wait(1 , 1)
Abid2

= receive(pl2 , bid up2 , v2); assign(v2 + random(), v2);
invoke(pl2 , cmp, v2); subscribe(O2 ,EPR,EPR > v2 ,Acond2

);wait(1 , 1)

1

Regarding to the operations auction time1 and auction time2 inform buyers
about the period of time in which the auction is active via variables at, at1 and
at2, which are used in the while structures to control this period. The operations
bid up1 and bid up2 are used to increase the current bid by adding a random
amount to the corresponding variable vi. The operation cmp is an auction sys-
tem operation that receives as parameter a variable of the buyers, vi. If the
value of this variable is greater than the current value of vEPR, then vEPR is
modified with this new value, that is, the new bid exceeds the current bid. After
that, by means of the activity setProp(EPR, vEPR), we can update the value
of the resource property with the new bid. Finally, the operations bid finish1,
bid finish2 update the value of vw to inform the buyers who is the winner once
the auction has expired.

In Fig. 1, we depict a simplified version of the PTCPN for the online auc-
tion system. The complete model can be accessed at the following web ad-
dress: http://www.dsi.uclm.es/retics/PetriNets2012/. Here, we have con-
structed a hierarchical net relying on the notions of substitution transitions,
sockets and ports offered by CPNTools.

Orchestrator 1Orchestrator Sys

ac2

Acond2

ap2

Abid2

subs2

Wait&Subscribe2

ac1

Acond1

ap1

Abid1

subs1

Wait&Subscribe1

while

While

as

Assign

per_Os

pex_O2

pok_ac2

INT

pin_ap2

pex_Os

pin_ap1

pin_O2

pok_ac1 pok_w

pok_as

pin_w

pok_O1

pin_O1pin_Os

Assign

While

Abid1

Acond1

Wait&Subscribe2

Abid2

Acond2

Wait&Subscribe1

pin_ac1 pin_ac2

per_O1

per_O2

tok

p_OK

pok_O2

Orchestrator 2

pex_O1

CR

CreateResourceCreateResource

Fig. 1: A simplified PTCPN for the online auction system.

2

http://www.dsi.uclm.es/retics/PetriNets2012/

