
BPEL-RF Tool: An Automatic Translation from WS-BPEL/WSRF S pecifications to
Petri Nets

Maŕıa D́ıaz, Valent́ın Valero, Hermenegilda Macià, Jose Antonio Mateo, Gregorio Dı́az
Informatics Research Institute of Albacete (I3A) Albacete, Spain

Email: {Maria.DiazTello, Valentin.Valero, Hermenegilda.Macia,JoseAntonio.Mateo, Gregorio.Diaz}@uclm.es.

Abstract—Composite Web services technologies are widely
used due to their ability to provide interoperability among
services from different companies. Thus, orchestration lan-
guages like WS-BPEL have recently appeared to manage the
interactions of multiple services in order to achieve a global
aim. Web services are usuallystateless, which means that
no state is stored from the clients viewpoint. However, some
new applications and services have emerged, which require to
capture the state of some resources. Therefore, new standards
to model Web services states have arisen, such as Web Services
Resource Framework (WSRF). In this paper, we present a tool,
which takes as input a specification in BPEL-RF (a language
defined on the basis of both standards), and transforms it
into a prioritised-timed coloured Petri net (PTCPN). These
PTCPNs can be verified and validated with the well-known
tool, CPNTools.

Keywords-Web Service compositions; WS-BPEL ; WSRF;
Coloured Petri nets; Tool support; Stateful workflows

I. I NTRODUCTION

The development of software systems is becoming
more complex with the appearance of new computational
paradigms such as Service-Oriented Computing (SOC), Grid
Computing and Cloud Computing. In January of 2004,
several members of theGlobus Allianceorganization and
the computer multinationalIBM with the help of experts
from companies such asHP, SAP, Akamai, etc.defined the
basis architecture and the initial specification documentsof a
new standard to describe distributed resources, Web Services
Resource Framework (WSRF) [10]. The WSRF elements
that are considered in the language BPEL-RF are:

• WS-ResourceProperties: There is a precise specifica-
tion to define WS-Resource properties, based on a Re-
source Properties Document (RPD), which represents
the properties of the associated resource (disk size,
processor capacity, etc.). Nevertheless, for simplicity,
we only consider a single property for each resource,
which is an integer value. Resources are identified
by their EPRs (End-Point References), so we will
also use this mechanism for identification purposes,
but, for simplicity, we will consider these references
as static, instead of assuming a dynamic mechanism
to assign them. As a shorthand notation, EPRs will
also be used to denote the resource property values.
Among the operations allowed by the standard are

GetResourcePropertyand SetResourceProperty, which
are used to manipulate the resource property values.

• WS-ResourceLifetime: The WSRF specification does
not provide a standard way to create resources. How-
ever, resources have an associated lifetime, which
means that once this time has elapsed, the resource
is considered to be destroyed. We have then included,
for completeness, an operation to create resources,cre-
ateResource, in which the initial value of the resource,
its lifetime and the activity that must be launched upon
its destruction are indicated. We also have an opera-
tion in order to modify the current resource lifetime,
setTimeout.

• WS-Notification: Clients can subscribe to WSRF re-
sources in order to be notified about some topics
(resource conditions). We therefore include thesub-
scribe operator, indicating the condition under which
the subscriber must be notified, and the activity that
must be executed upon that event.

WS-BPEL [3], for short BPEL, is an OASIS orchestration
language for specifying actions within Web service business
processes. BPEL is an orchestration language in the sense
that it is used to define the composition of services from a
local viewpoint, describing the individual behaviour of each
participant. BPEL processes usevariables to temporarily
store data. Variables are therefore declared on a process
or on a scope within that process. In our case, there will
be a single scope (root), so no nesting is considered here.
Besides, for simplicity again, we will only deal with integer
variables.

An orchestrator consists of a main activity, representing
the normal behaviour of this participant. There are also event
and fault activities, which are executed upon the occurrence
of some events, or due to some execution failures, respec-
tively. BPEL activities can bebasic or structured. Basic
activities are those which describe the elemental steps of
the process behaviour, such as the assignment of variables
(assign), empty action (empty), time delay (wait), invoke
a service (invoke) and receive a message (receive), reply
to a client (reply), and throw an exception (throw). We
also have an action toterminate the process execution at
any moment (exit). For technical reasons we have also



included a barred form ofreply action, which is used when
a service invocation expects a reply, in order to implement
the synchronization with thereply action from the server.
Structured activitiesencode control-flow logic in a nested
way. The considered structured activities are the following:
a sequenceof activities, separated by a semicolon, the
parallel composition, represented by two parallel bars (‖),
the conditional repetitive behaviour (while), and a timed
extension of the receive activity, which allows to receive
different types of messages with a time-out associated (pick).

The main motivation of this work is to provide a formal
semantics for WS-BPEL+WSRF to manage stateful Web
services workflows by using the existing machinery in
distributed systems, and specifically a well-known formal-
ism, such as prioritised-timed coloured Petri nets (PTCPN),
which are a graphical model that also provide us with the
ability to simulate and analyse the modelled system. In
order to deal with the integration of BPEL plus WSRF in a
proper way, we have realised that it is more convenient to
introduce a specific semantic model, which covers properly
all the relevant aspects of WSRF such as notifications and
resource time-outs. The integration of both standards is not
new; in the literature, there are a bundle of works defining
this integration, but none of these works define a formal
semantics in terms of Petri nets.

In [16] the integration of BPEL in Grid environments
is considered, and the author discusses the benefits and
challenges of extensibility in the particular case of OGSI
workflows combined with WSRF-based Grids. Other two
works centred around Grid environments are [11] and [8].
The first one justifies the use of BPEL extensibility to allow
the combination of different GRIDs, whereas Ezenwoye et
al. [8] share their experience on BPEL to create and manage
WS-Resources that implement the factory/instance pattern in
bioinformatics. On the other hand, Ouyang et al. [15] define
the necessary elements for translating BPEL processes into
Petri nets. Thus, they cover all the important aspects in the
standard such as exception handling, dead path elimination
and so on. The model they consider differs from ours in that
we formalise the whole system as a composition of orches-
trators with resources associated, whereas they describe the
system as a general scope with nested sub-scopes leaving
aside the possibility of administering resources. Besides, we
have also formalized the event handling and notification
mechanisms. Following this translation, in [14], Ouyang
et al present the tool WofBPEL and a companion tool,
BPEL2PNML. The idea behind is to provide tool support
for the analysis of BPEL processes. Related toπ-calculus
semantics, Dragoni and Mazzara [6] propose a theoretical
scheme focused on dependable composition for the WS-
BPEL recovery framework. In this approach, the recovery
framework is simplified and analysed via a conservative
extension ofπ-calculus. The aim of this approach clearly
differs from ours, but it helps us to have a better understand-

ing of the WS-BPEL recovery framework. In addition, we
also consider time constraints. Moreover, we would like to
highlight the work of Farahbod et al. [9] and Busi et al. [4].
In the first one, the authors extract an abstract operational
semantics for BPEL based on abstract state machines (ASM)
defining the framework BPELAM to manage the agents
who perform the workflow activities. In this approach time
constraints are considered, but they do not formalize the
timed model. In the second one, they also define aπ-calculus
operational semantics for BPEL and describe a conformance
notion. They present all the machinery to model web service
compositions (choreographies and orchestrations). The main
difference with our work is that we deal with distributed
resources.

Finally, in the literature one can find several tools per-
forming the opposite translation, i.e., from Petri nets into
BPEL. In [2], van der Aalst and Lassen present the the-
ory and implementation of a translation between WF-nets
and BPEL. The implementation is performed via the tool
WorkflowNet2BPEL4WS. This tool automatically translates
coloured Petri nets, CPNs, into BPEL code. These CPNs
are specified using CPN Tools [5]. Other similar proposal,
WoPeD [7], is a Java-based tool that provides an easy-to-use
software for modelling, simulating and analysing workflow
processes and resource descriptions. WoPeD supports the
CPN notation and the standard file format of WoPeD is
PNML, allowing model exchange with other Petri net tools.
After this introduction, Section II shows briefly the language
BPEL-RF, whereas Section III presents indeed the tool.
Section IV contains a case study so as to illustrate how the
tool works. Finally, Section V finishes the paper with some
conclusions and possible future work.

II. BPEL-RF LANGUAGE

In this section, we are going to present briefly the main
characteristics of the language called BPEL-RF (Business
Process Execution language for the Resource Framework).
An operational semantics for this language was presented in
our previous work [12], and the corresponding translation
to prioritised-timed coloured Petri nets in [13]. Due to the
lack of space, we omit here these transformations, so the
interested reader can refer to [12], [13] for them.
We use the following notation:ORCHis the set of orchestra-
tors in the system,Var is the set of integer variable names,
PL is the set of necessary partnerlinks,OPS is the set of
operations names that can be performed,EPRSis the set of
resource identifiers, andA is the set of basic or structured
activities that can form the body of a process. Note that
each orchestrator uses its own variables despite we have not
separatedVar in its corresponding subsets.

The specific algebraic language, then, that we use for the



activities is defined by the following BNF-notation:

A ::= throw | receive(pl, op, v) | invoke(pl, op, v1) | exit |

reply(pl, v) | reply(pl , op, v2 ) | assign(expr, v1) | empty |
A ;A | A ‖A |while(cond,A) | wait(timeout)|
pick({(pli, opi, vi, Ai)}

n
i=1

, A, timeout) |
createResource(EPR, val, timeout,O,A) |
getProp(EPR, v)| setProp(EPR, expr) |
setTimeout(EPR, timeout) |
subscribe(O,EPR, cond′, A)

whereO ∈ ORCH ,EPR ∈ EPRS , pl , pli ∈ PL, op,

opi ∈ OPS , timeout ∈ IN,expr is an arithmetic expression
constructed by using the variables inVar and integers;
v , v1 , v2 , vi range overVar, andval ∈ Z. A conditioncond
is a predicate constructed by using conjunctions, disjunc-
tions, and negations over the set of variablesVar and
integers, whereascond ′ is a predicate constructed by using
the correspondingEPR (as the resource value) and integers.
Notice thatsetPropandgetPropdo not contain the property
name since, for simplicity, we are only considering a single
property for each resource. We therefore use its EPR as
representative of this property, as we already observed in the
introduction. Note that we do not take into consideration cor-
relation sets, dynamic partnerlinks or instance creation,since
we only deal with the static aspects of WS-BPEL. We plan
as part of our future work an extension of this operational
semantics enriched with these additional constructions, as
well as with the inclusion of structured variables, insteadof
just considering all variables as integers. An orchestration is
now defined as a tupleO = (PL,Var ,A,Af ,Ae), whereA
andAf are activities defined by the previous syntax andAe

is a set of activities. Specifically,A represents the normal
workflow, Af is the orchestrator fault handling activity and
Ae = {Aei}

m
i=0

are the event handling activities.

III. BPEL-RF TOOL

As WS-BPEL and WSRF are XML-based languages, and
the PTCPNs supported by CPNTools are also represented
by XML files, we have used XSLT stylesheets to transform
the BPEL-RF document into another XML document rep-
resenting the PTCPN in a format supported by CPNTools.
These XSL stylesheets are created using a XSLT editor. The
obtained XML document can be visualized, simulated and
verified with CPNTools. As the tool has been developed in
Java, it is multi-platform, i.e., runs on Windows/Linux/Mac
systems under the Java virtual machineR© (the tool is avail-
able at [1]). The XSLT transformation sheets (eXtensible
Stylesheets Language/Transform) are a W3C declarative
language to transform XML documents into other XML
documents or to some other kind of documents. The XSLT
stylesheets are widely used, as an easy way to apply trans-
formation rules to a source document in order to obtain
the corresponding output documents. Nowadays, XSLT is

widely recommended in web edition area, due to its ability
to generate HTML or XHTML sheets.

For making that transformation, XSLT allows to convert
the input in two ways: On the one hand, the programmer
can manipulate the contents of the document to organize
them without changing the document format, whereas, on
the other hand, the programmer can use XSLT sheets to
transform the contents into other different formats.

We have then defined a number of rules to extract the
PTCPN elements from the choreography defined as a com-
position of WS-BPEL documents. Thus, our tool, BPEL-RF,
is used to achieve this transformation in an automatic way,
presenting to the user a.cpn file, which can be opened with
CPNTools. After doing this, the user can analyse and verify
the model by using the features of CPNTools.

The XSLT stylesheet document starts with the instruction
〈 ?xml version =′ 1.0′?〉. The element root is a stylesheet,
which contains all other elements. In an XSLT stylesheet,
the name of reserved elements by the specification comes
from the same namespace, so they must be written pre-
ceded by the appropriate alias that must point to the URL:
http://www.w3c.org/1999/XSL/Transform.
In Fig. 1, we show a piece of the structure of the XSLT
document.
Once we have located the initial and final mark of the root
element “xsl:stylesheet”, we define the transformation rules:

• Each rule is defined by an “xsl:template”.
• In the rules, we indicate those elements of the XML

document that will be transformed.
• The rules also indicate how each element must be

transformed.
• Each rule is applied to all elements of the XML

document.
• In the XSLT rules, between their initial and final marks,

one can include:

– Text to be written literally in the output document.
– Marks that are added to the XML output document.
– Reserved elements to perform an action such as

retrieving the value of an item, sorting results,
calling other rules of the stylesheet, etc.

For the sake of simplicity, BPEL-RF Tool has a very
simple and intuitive interface shown in Fig. 2. It consists
of a main frame with separated elements such as a file
menu and the transformation panel. The file menu has three
different submenus, namely:File, CPN ToolsandHelp. The
File submenu offers two options. The first one,Open WS-
BPEL WSRF File, opens a BPEL-RF document previously
edited and saved with the tool; whereas the second one,Exit,
exits the program. TheCPN Toolssubmenu only offers one
option, Save Coloured Petri Net, which saves the translated
XML code to a .cpn file. Finally, the last submenu,Help,
consists of two optionsHelp and About. The optionAbout
only informs users about the tool version, the optionHelp



<?xml version="1.0" ?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform

version="1.0">
<xsl:output indent="yes" />
<xsl:template match="/">
<workspaceElements>
<generator tool="CPN Tools" version="3.2.2" format="6" />
<cpnet>
...
<page id="ID6">
<template>
<xsl:for-each select="//process">
<xsl:for-each select="child::*">
<xsl:if test="(name()=’pick’)">
<xsl:call-template name="pick" />
<xsl:call-template name="picktrans" />
</xsl:if>
....
</template>
</page>
...
</cpnet>
</workspaceElements>
</template>
</stylesheet>

Figure 1. Illustration of an XSLT template

offers users a wide user manual with the possibility of
searching through the information using either a table of
contents or a search option.

Figure 2. Main screen of the tool.

The main elements of the interface are:
• The WS-BPEL / WSRF Textbox permits users to

introduce XML code following the specification given
by WS-BPEL and WSRF. This XML is used as the
source code to be translated into PTCPN. This code
can be introduced in two ways; either by writing
the XML code by hand or by loading a previously
saved document using theOpen WS-BPEL WSRF File
submenu mentioned above. A dialog window will be
shown to the user asking him to select the document

to be opened. If the file is not valid, an error message
will be displayed on the screen.

• In the CPNTools Textbox, after clicking on the button
“Transform”, the corresponding Petri Net XML spec-
ification is shown. To save this specification, the user
must click on theSave Colored Petri Net Fileoption in
the CPN Tools menu. A dialog window will be shown
to the user to choose the destination folder.

Moreover, we have another two buttons on the screen:

• The Transform button generates the corresponding
PTCPN. The result will be automatically displayed in
the CPN Tools Textbox after a few seconds. If the WS-
BPEL WSRF Textbox is empty, pressing the Transform
button will have no effect.

• The Clear button is used to clean the contents of both
text boxes. If both are empty, pressing on this button
will have no effect.

IV. CASE STUDY: AUTOMATIC MANAGEMENT SYSTEM

FOR STOCK MARKET INVESTMENTS

The case study concerns a typical automatic management
system for stock market investments, which consists ofn+1
participants: the online stock market system andn investors,
Ai, i = 1, . . . , n. Here, the resource will be the stocks of
a company that the investors want to buy just in case the
price falls below an established limit, which the investorsfix
previously by means of subscriptions, i.e., an investor sub-
scribes to the resource (the stocks) with a certain guard (the
value of the stocks he/she want to pay for it). The lifetime
lft will be determined by the stock market system and the
resource price will be fluctuating to simulate the rises/drops
of the stock. Notice that we do not take into account the
stock buy process since our aim is to model an investors’
information system. Thus, the participants will be notified
when their bids hold or the resource lifetime expires. Let us
consider the choreographyC = (Osys ,O1 , . . . ,On), where
Ok = (PLk ,Vark ,Ak ,Af k

,Aek
), k=sys, 1,..., n;Varsys =

{at , vEPR},Vari = {vi}, Af k
= exit . Variable vEPR

serves to temporarily store the value of the resource property
before being sent;vi is the variable used for the interaction
among participants, and, finally,at controls the period of
time in which the auction is active. Note that the valuex
indicates the resource value at the beginning,at0 is the time
that the “auction” is active, and, finally,xi is the value of
the stocks that he/she wants to pay for. Suppose that all the
variables are initially0:

Asys = assign(x + 1 , vEPR); assign(at0 , at);
CreateResource(EPR, lft , x , empty);
while(actualTime() <= at ,Abid)

Abid = getProp(EPR, vEPR); assign(vEPR + bid(), vEPR);
setProp(EPR, vEPR);wait(1 , 2 )

Ai = wait(1 , 2 ); subscribe(Oi ,EPR,EPR < xi ,Acondi);
pick((pli , buy , vi , empty), empty , at0 )

Acondi = getProp(EPR, vEPR); invoke(pli , buy , vEPR)



Here, the functionbid is used to increase/decrease the
stocks value simulating the fluctuation of the stocks price.

0

0

0

0

0

0

0

0

0

0

0

0

0

(EPR,max)

0

0

t1

0

0

at

at

at

at

0

vEPR

vEPR

0

[not(actualTime()<=at)]

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

(EPR,max,value)

INTxINTxINT

(EPR,max)

INT

0

(EPR,max)

vEPR

vEPR-p1

at

0

(EPR,max)

(EPR,max,value)

1001

@+discrete(1,2)

0

INT

PingetProperty0

INT

getProperty10

[actualTime()<=at]

INT

value1

0

at

0

0

at

0

0@+max

INT

0

condfalsewhileini0

getProperty20

Assign3

(EPR,max,value)

INT

Pinassign1

Assign1

Assign2PincreateResource0 Pinassign2createResource0

createResource10

at

0

0

(EPR,max)

PergetProperty0

(EPR,max)

PricreateResource0

(EPR,max,1040)

PracreateResource0

Pokwait0

[actualTime()<=at]

PinsetProperty0

pt1

(EPR,max,value)

(EPR,max,vEPR)valuePinassign3

pvEPR

Pinwhile0

0

condtruewhileini0

Pinwait0

Pinassign0

Assign0

setProperty20

t0

2

at[not(actualTime()<=at)]

INTxINT

wait0

condtruewhileend0

vEPR

setProperty0

PersetProperty0

pat

condfalsewhileend0Pokwhile0

Figure 3. PTCPN of the online stock market.

In Figs. 3 and 4, the PTCPNs for one buyer and for
the system are depicted. These figures have been obtained
automatically by using our tool.

A. Analysis

CPNTools offers us two forms to check the correctness
of our system: formal verification and simulation. First, the
simulation helps designers to understand how the system
exactly works and it is a mean to detect possible errors in
early stages of the development process in order to refine the
model according the clients’ requirements. Besides, formal
verification through state space analysis could be done
in order to ensure that our system achieves some formal
properties such as liveness, deadlock-freeness and so on. In
this way, Table I shows the results obtained considering 1,
2, 3, 4 or 5 investors. Note that we have considered the
following assumptions:

• The “auction” timeat0 is limited to 10 time units.
• The resource is active during 15 time units (lft=15).
• The resource valuex is 100 money units.
• The value of subscription of each investori, xi, is x−

(9 + i), that is, if the system has only one investor
its subscription guard will bex < 90, whereas with
5 investors, the last investor will have a subscription
guard ofx < 86.

0

0

z0

0

0

0@+1

0

0

x

x

x-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

PLOW

INT

INT
UINT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

wait1

INT

@+discrete(1,2)

subscribe10 Persubscribe0

INT

Pinsubscribe0

Pinpick0Psub0 pick20

[x=0]

0

x

INT

Subscribe0

0

STRINGxSTRINGxINT

PingetProperty1 getProperty21

invoke31

invoke21

getProperty11

PergetProperty1

Subscribe20

[value<1000]

timeout+1

[x>0]

Pinempty2

empty2 Pokempty2

Pininvoke1

invoke1
("pl1","buy1",value)

("pl1","buy1",value)

Precpick0

Papick0

tr0

ta0

pick30

Pickbuy1pl10

empty1

[x>0]

PLrinvoke1

PLsinvoke1

Pokpick0

pick100 Pokempty1

Pinempty1

Pinwait1

Pokinvoke1

Figure 4. PTCPN of one buyer.

• The functionbid will fluctuate the stocks price between
-2 and 1 in order to simulate that the price only can
rise 1 and drop 2 at most each time unit.

We will focus on deadlock-freeness to ensure that the system
never gets stuck while the participants have activities to do
in their workflow. We have leveraged the functions offered
by CPNTools to demonstrate that in all dead markings
of the system the final place is marked, which leads us
to conclude the system has finished correctly. This final
place, Pokfinal0, is marked by a transition when all the
participants have finished their workflow. For the sake
of clarity, we have not drawn this place in each figure.
Thus, the next SML code checks when this situation occurs:
fun DesiredTerminal n =((Mark.PetriNet’Pokfinal0 1 n) == 1’true),
which returns true if the place Pokfinal0 is marked. In
addition, it is needed to evaluate the following predicate:
PredAllNodes DesiredTerminal=ListDeadMarkings(), to check

that the list of dead marking contains the marking of the
Pokfinal0place.

Number of investors
Properties 1 2 3 4 5

State Space Nodes 3561 7569 16983 50350 89879
State Space Arcs 5203 12843 33271 112101 262215

Time (s) 2 7 23 146 1140
Dead Markings 124 244 454 1108 874

Table I
STATE SPACE ANALYSIS RESULTS



In Fig. 5, we show the results offered by CPNTools to
our queries for the case ofthree investors. Here, it can
be appreciated that all dead markings hold the predicate
DesiredTerminal, and, therefore, when the system reaches
a dead marking is because system has terminated, which
demonstrates the absence of deadlocks in our case study.

Figure 5. Result of the queries in CPNTools.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, a tool which permits the automatic trans-
lation between BPEL-RF specifications and PTCPNs sup-
ported by CPNTools has been presented. This is a great
advantage with respect to our previous works in such a
way the user only needs to provide the XML code for
the orchestration and the tool will extract automatically
the corresponding translation in order to effectuate the
formal analysis of the system. This analysis can be done by
simulation or by formal verification. In the case study, we
have centred on formal verification looking for the absence
of deadlocks in the model. Finally, as future work, we plan
to extend our work with additional features of both WS-
BPEL and WSRF, as the discovery of existing resources.
We are also working on the demonstration of the equivalence
between the operational semantics of [12] and the Petri nets
semantics of [13].

ACKNOWLEDGMENT

This work has been partially supported by CICYT project
TIN2009-14312-C02-02, and JCCM project PEII09-0232-
7745.

REFERENCES

[1] [retrieved:September,2012]BPEL-RF tool web site,
http://www.dsi.uclm.es/retics/BPELRF/

[2] W. M. P van der Aalst and K. B. Lassen. Translating
unstructured workflow processes to readable BPEL:
Theory and implementation, Journal of Information
Software Technology, vol. 50, number 3, pp. 131-159,
2008.

[3] [retrieved:September,2012]Alexandre Alves,
Assaf Arkin, Charlton Barreto, Ben Bloch,
Francisco Curbera, and Rania Khalaf. Web
Services Business Process Execution Language,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[4] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G.Zavattaro, Choreography and Orchestration: A Syn-
ergic Approach for System Design. In International
Conference of Service Oriented Computing (ICSOC),
Lecture Notes in Computer Science, vol. 3826, pp. 228-
240, 2005.

[5] [retrieved:September,2012]CPNTools official web site,
http://cpntools.org.

[6] N. Dragoni and M. Mazzara, A formal Semantics for
the WS-BPEL Recovery Framework - Thepi-Calculus
Way. In International Workshop on Web Services and
Formal Methods (WS-FM). Lecture Notes in Computer
Science, vol. 6194, pp. 92-109, 2009.

[7] A. Eckleder and T. Freytag, WoPeD 2.0 goes BPEL 2.0.
In 15th German Workshop on Algorithms and Tools for
Petri Nets, Algorithmen und Werkzeuge für Petrinetze
(AWPN 2008). CEUR Workshop Proceedings, vol. 380,
pp. 75-80, 2008.

[8] O. Ezenwoye, S.M. Sadjadi, A. Cary, and M. Robinson,
Grid Service Composition in BPEL for Scientific Ap-
plications. In OTM Conferences, pp. 1304-1312, 2007.

[9] R. Farahbod, U. Glässer, and M. Vajihollahi, A Formal
Semantics for the Business Process Execution Language
for Web Services. In Joint Workshop on Web Services
and Model-Driven Enterprise Information Services (WS-
MDEIS), pp. 122-133, 2005.

[10] [retrieved:September,2012]I. Foster, J. Frey, S. Gra-
ham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Ley-
mann, M. Nally, T. Storey, and S. Weerawaranna,
Modeling Stateful Resources with Web Services,
http://www.globus.org/wsrf/.

[11] F. Leymann, Choreography for the Grid: towards
fitting BPEL to the resource framework. Journal of
Concurrency and Computation : Practice & Experience,
vol. 18, issue 10, pp. 1201-1217, 2006.

[12] J.A. Mateo, V. Valero, and G. Diaz, An Operational
Semantics of BPEL Orchestrations Integrating Web Ser-
vices Resource Framework. In International Workshop
on Web Services and Formal Methods (WS-FM), 2011.

[13] [retrieved:September,2012]J.A. Mateo, V. Valero, H.
Macià, and G. Diaz. A Coloured Petri Net Approach
to Model and Analyse Stateful Workflows Based on
WS-BPEL and WSRF. Technical Report DIAB-12-
04-2, University of Castilla-La Mancha. Available at:
http://www.dsi.uclm.es/trep.php?codtrep=DIAB-12-04-2

[14] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S.
Breutel, M. Dumas, and A. ter Hofstede, WofBPEL:
A Tool for Automated Analysis of BPEL Processes.,
In Third International Conference on Service-Oriented
Computing (ICSOC 2005). Lecture Notes in Computer
Science, vol. 3826, pp. 484-489, 2005.

[15] C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S.
Breutel, M. Dumas, and A.H.M. ter Hofstede. Formal
semantics and analysis of control flow in WS-BPEL.
Science of Computing Programming, vol. 67, issue 2-3,
pp. 162-198, 2007.

[16] A. Slomiski. On using BPEL extensibility to imple-
ment OGSI and WSRF Grid workflows. Journal of
Concurrency and Computation : Practice & Experience,
vol. 18, pp. 1229-1241, 2006.

http://www.dsi.uclm.es/retics/BPELRF/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://cpntools.org
http://www.globus.org/wsrf/
http://www.dsi.uclm.es/trep.php?codtrep=DIAB-12-04-2

	Introduction
	BPEL-RF Language
	BPEL-RF Tool
	Case Study: Automatic management system for stock market investments
	Analysis

	Conclusions and Future Works

