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Juan Pavóna,∗, Jorge Gómez-Sanza, Antonio Fernández-Caballerob,c, Julián J. Valencia-Jiménezc
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Abstract

Intelligent multisensor surveillance systems consist of several types of sensors, which are installed on fixed and mobile devices. These
components provide a huge quantity of information that has to be contrasted, correlated and integrated in order to recognize and react on special
situations. These systems work in highly dynamic environments, with severe security and robustness requirements. All these characteristics imply
the need for distributed solutions. In these solutions, scattered components can decide and act with some degree of autonomy (for instance, if they
become isolated), or cooperate and coordinate for a complete tracking of special situations. In order to cope with these requirements and to better
structure the solution, we have decided to design surveillance system control as a multiagent system. This is done by applying an agent-orientated
methodology, which is assessed with concrete scenarios.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The availability of new types of wireless networks and
a wide range of sensor devices, with more computational
capabilities, allows the implementation of more sophisticated
surveillance systems [6]. These systems consist of networks
of sensors (video cameras, microphones, detectors, etc.) [14,
20], which are able to work in omnidirectional and directional
(orientatable in three dimensions) modes [3], and can be
mounted on mobile platforms (motorized artifacts that allow
movement around facilities under surveillance) or fixed ones
(anchored in a particular point of the facilities) [8]. An
important part of this type of systems is their control [21].

Traditionally, the control of a surveillance system has
been performed with a centralized configuration. Sensors
report to a central controller that takes decisions on what
to do and transmits orders to remote devices. Though the
design of this solution is conceptually simple, it has several
limitations in what respects to robustness and scalability.
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These limitations come from the hierarchical rigidity of the
centralized architecture. For instance, on failures or intrusions
in the communications network some areas of the system
under surveillance may be left uncovered. Or a serious event
may cause alarm flooding and lead to a collapse of the
control system, making more difficult its ability to decide and
react. This kind of reasons drive to considering new more
decentralized and distributed architectures.

This distribution has to consider two main issues. On the one
hand, the different system components should have a certain
degree of autonomy, in order to be able to take decisions locally.
This autonomy facilitates the solution of several problems that
can arise as a consequence of temporal isolation of these
components. It also reduces the number of communications
in the system, improving global performance. On the other
hand, there is a need to consider the coordination of the
components in such distributed systems. This coordination will
improve system functioning, for instance, in the evaluation of
the relevance of events that are captured by several sensors;
by being able to track elements moving around the system
under surveillance; or for the collaboration of several effectors
to solve some problem.
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A way of implementing decentralization, autonomy and
coordination needs is by means of agent technology [2,
4]. From the point of view of this technology, intelligent
multisensor surveillance systems would be considered as
multiagent systems (MAS). Agents are distributed software
components [9], with autonomy to take their own decisions
and ability to perceive and act on their environment.
Depending on the degree of complexity that their behaviour
requires, their architecture may be reactive, where actions
are triggered when certain events occur, or cognitive, where
agents reason, even learn, to adapt or create new solutions
in a changing environment. Another fundamental aspect of
agents is their social ability, the capability of interacting
for implementing coordinated solutions. In defining these
interactions, the concept of protocol is enriched with social
metaphors like organizational structure or laws. Because of
these properties, the distribution of intelligence as a MAS will
allow addressing the issues that appear when developing an
intelligent multisensor surveillance system:

• Bandwidth. Distributed processing allows processing data
at their origin. This saves bandwidth in the transmission
of the great amount of data that sensors produce towards
processing nodes, taking also into account that usually these
data flows are highly redundant.

• Productivity. Total processing in the system increases as
more nodes participate in parallel; therefore there is more
computer power than in a centralized architecture.

• Speed. Distributed processing in sensor nodes does not
only increase global processing but it relieves central
processing units of simple repetitive tasks. In this way,
central processing units can concentrate on more specific
analysis and computations that require more resources.
Hence, central units can complete their tasks in less time.

• Robustness. Fault tolerance is improved with component
replication. The increase in redundancy facilitates reconfig-
uration and failure recovery. Also, because of agents’ auton-
omy, it is possible to locally execute solutions for specific
failure situations, without dependence of a central controller.
Furthermore, agent coordination allows improving diagnosis
on events captured by the system.

• Scalability. This is a consequence of autonomy and
distribution. The system can grow in an easier and
more reliable way, since most of the processing is local
to the nodes that have been added. Furthermore, the
organization of the MAS defines a structure that facilitates
the management of system growth.

There are some precedents on the use of agents in
surveillance systems. For instance, Monitorix [1] is a
MAS for video-based traffic surveillance that monitors
vehicles by means of a traffic model and some learning
algorithms that adjust the parameters of the model.The VSAM
(Video Surveillance and Monitoring) team has developed a
multicamera surveillance system that allows a human operator
to monitor the activity starting from a group of active
videotape sensors [5]. The system allows to detect people
and vehicles automatically and to have them located with
respect to a geospatial model. Another recent work proposes
MAS architecture for the understanding of the dynamics of a
scene by means of the union of the information captured from
diverse cameras [18]. In multisensorial surveillance, Molina
et al. [13,12] use fuzzy logic for the evaluation of priorities of
multisensor tasks in defense surveillance, everything supported
by MAS for the reasoning logic.

Considering the aforementioned works, the use of MAS
to build surveillance systems control has focused in detailed
design and implementation issues, for instance, by building
agent architectures or using services from an agent platform.
In this paper, MAS are used more extensively. From a
methodological perspective, it studies how the complexity
and heterogeneity of components and their relationships can
be managed in the development of multisensor surveillance
systems. The methodology that is shown here integrates the
agent paradigm with model-driven engineering approach [19],
where the main products are models and the main elements of
these models are agents [16]. From these models, code can be
generated to be deployed in concrete hardware, provided that
proper code generators for the concrete hardware exist. From
the industrial point of view, this has the advantage of technology
independence since the same specification could be reused for
different target architectures, again provided that the adequate
code generator exists. For the developer, this has the advantage
of being able to work with all system components at a similar
level of abstraction, providing a more integrated view of the
system. This is shown later on with some examples.

As a modelling approach, this paper uses INGENIAS
[17], an agent-based model-driven methodology that covers
analysis, design, and implementation phases, and is supported
by modelling and code generation tools. The methodology
and the tools allow developers to obtain the implementation
automatically, dedicating most of the effort to the specification
of the functionality and deployment of the surveillance system.
When defining the functionality, the developer focuses on the
description of the autonomy of the agents, their coordination,
and how they get organized. Once the MAS has been defined,
the developer is free to choose how the specification is going to
be implemented; though using the code generation features of
the INGENIAS support tools is recommended.

The use of INGENIAS for modeling intelligent multisen-
sorial surveillance systems forces developers to consider agent
features explicitly, and this has been also a reason to choose
this methodology. This paper illustrates this modeling by means
of diagrams captured from the INGENIAS support tools and
snapshots of the automatically generated application. One of
the conclusions of this work is that design of this kind of sys-
tems can be improved and facilitated for surveillance experts by
customizing the tools to work graphically with domain related
concepts. This is possible as concepts normally considered for
surveillance systems could be defined by extending agent re-
lated concepts.

Section 2 introduces the basic concepts of INGENIAS
methodology for building MAS as the basis for this work. The
next sections illustrate the application of the methodology for
the development of the MAS that implements the control of the
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intelligent multisensor surveillance system. The requirements
are analysed in Section 3, with the purpose of determining
the goals that the MAS should satisfy. The decomposition of
these goals will allow determining a set of tasks and workflows
in the system, as well as the agents responsible for them.
These elements determine the architecture of the MAS, which
is presented in Section 4. With the complete specification of
the MAS, it is possible to generate code, by using INGENIAS
tools, which can be executed. Section 5 shows how this happens
for a test application. Finally, Section 6 presents a summary
of the main features of the developed system, as well as those
issues that have been identified for its evolution.

2. INGENIAS methodology for the development of MAS

There are several reasons for the choice of INGENIAS
agent-oriented methodology in this work, namely its modelling
capabilities, its tool support, and its model-driven development
process. Its modelling language supports well a separation of
concerns, by considering five viewpoints for describing MAS.
This way, it facilitates the analysis and design of the system.
The modelling language is supported by a set of tools, the
INGENIAS Development Kit (IDK), with a graphical editor
and code generation facilities. The editor can be personalized
for a concrete domain problem. As we discuss at the end, this
could be useful to create a specialized editor for surveillance
systems design and configuration. Also, INGENIAS promotes
a model-driven approach that facilitates the independence
of modeling language with respect to the implementation
platform. This is especially important here as our intention
is to abstract away programming details and concentrate on
modelling and analysis of the surveillance system components,
their coordination and configuration. As the IDK supports the
definition of transformations between models and code for
implementation platforms, it is possible to design the MAS with
a single modeling language and generate code for each specific
device in the surveillance system. Code generation process
is independent of the operating system and programming
language. Note the advantage in productivity that automatic
code generation implies in this kind of systems where there are
usually multiple types of devices and platforms.

The INGENIAS modeling language is structured in five
packages that represent the viewpoints from which a MAS can
be regarded: organization, agent, goals-tasks, interactions and
environment.

The organization of a MAS establishes the framework where
agents, resources, tasks and goals coexist. It defines structural
relationships (groups, hierarchies), social norms (constraints
and forms in the behaviour of agents and their interactions), and
workflows (how agents collaborate when performing tasks in
the organization). Groups may contain agents, roles, resources,
or applications. There may be several ways to structure an
organization. For instance, a MAS can be structured according
to its functional needs, or, at the same time, agents can be
grouped by a geographical distribution. An agent, therefore,
can belong to several groups at the same time. Assignment
of elements to a group obeys some organizational purpose,
i.e. because grouping facilitates the definition of workflows or
because its members have some common characteristics. In
general, the concept of role is used to provide more flexibility in
the definition of organizations. A role represents functionality
or services in an organization structure. Agents play roles in the
organization. Additionally, several agents may play the same
role, each one according to its abilities and strategies.

The functionality of the organization is defined by its
purpose and tasks. An organization has one or more goals,
and depends upon its agents to perform the necessary tasks
to achieve them. How these tasks are related, and who
is responsible of their execution, is defined in workflows.
Workflows show the dynamics of the organization. They define
associations among tasks and general information about their
execution. Each task requires defining its expected results,
the agent or role responsible for its execution, and which
resources are required. This is useful to gain knowledge on the
relationships between agents through tasks, and the assignment
and availability of resources in an organization.

Both aspects, structural and dynamic, define the macro view
of the MAS. This perspective facilitates the management of
complex systems as it allows determining the context and
norms for the behavior of agents, similarly to what happens
in human organizations. Given the diversity of devices and
components in a multisensor surveillance system, this kind of
structuring facilitates the understanding and management of the
system.

Agent behaviour is described in the agent viewpoint.
Conceptually, an agent has a mental state, which is a set
of goals (its purpose) and beliefs (its knowledge). Also, an
agent has a mental state processor, which allows the agent to
decide which task to perform, and a mental state manager to
create/modify/delete mental state entities. INGENIAS does not
state specifically how to define the mental state processor as
it considers that there may be many ways to implement it. In
this way, agents can be simple reactive systems, whose behavior
is modeled as simple automata, or complex cognitive systems,
supported by a rule-based engine, a case-based reasoning
system, or a neural network, for instance. It depends on
the needs of the application or the mechanism that best fits
according to the developer.

Agents have also a social dimension, as they collaborate
to satisfy organizational goals. When designing a MAS, it is
possible to start with the identification of organization (system)
goals. These goals can be refined into simpler goals up to a
level where it is possible to identify specific tasks, workflows,
or plans that satisfy them. Another possibility is to identify
individual goals for agents, which could be refined in a similar
way. In both cases, there will be a relationship of goals and
tasks, which is described in the goals-tasks viewpoint. This
facilitates the analysis and design of the system following the
requirements, which are represented as goals in agent terms.

As social entities, agents interact. Their interactions can be
produced in several ways, being the most common message
passing, which is normally asynchronous, and shared spaces,
where agents can act (produce modifications) and perceive
(the modifications) as in shared tuple spaces communication
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paradigm. This is described in the interaction viewpoint. In
INGENIAS, apart of indicating the types of messages and
protocols in an interaction, developers must think about the
intentionality of the interaction: which goals are pursued by
the parts in the interaction, and how information exchange
actions contribute to their satisfaction. The analysis and design
of interactions will determine the coordination mechanisms
among the different agents in the system.

Finally, the environment is where agents perceive and act.
Depending on the application, perception and acting can have
very different meanings. The environment consists of a set of
resources, applications, and other agents. In many situations,
the environment can be specified as a set of application
programming interfaces. These interfaces would declare how
to interact with the environment. In a surveillance system the
environment specification provides the information about what
can be perceived by sensors and what actions can be performed
on the environment by effectors.

Taking into account the knowledge about the system or its
nature, the development process will be driven by one of these
viewpoints and complemented by the others. For instance, if it
is easy to establish requirements as use cases, they can serve to
identify goals as well as to drive analysis and design. The later
would be done by decomposition of goals, and identification
of associated tasks and responsible agents. Or if workflows are
well known in an organization, it will be easier to identify tasks,
the agents and their responsibilities concerning workflows.

The use of these modelling elements for the specification
of intelligent multisensor surveillance systems is illustrated
in the following sections. The next section shows how to
derive system goals from the use cases that are identified
during requirements analysis. Then, Section 4 provides design
diagrams that cover the different perspectives of the multi-agent
system.

3. Requirements analysis and system goals

An intelligent multisensor surveillance system has to
consider the diversity of devices as well as requirements from
the user. In particular, a multisensor system integrates several
sensors that capture different types of information, with specific
integration and processing needs each one. Sensors can be
active, if they can process the information they capture, classify
it and decide what to do according to their relevance; or
passive, if they just send the information they capture to some
sensor manager agent, which will take care of integrating and
processing the received information. In order to process sensor
signals, in the case of visual and audio data, the software has
to be able to code them into the simplest possible formats.
Compression of scenes or audio tracks implies the extraction
of semantic information, to move from low level analysis to
automatic interpretation at high level. Because of noisy and
unpredictable nature of audio and video signals, an extensive
use of probability theory (Bayesian networks, hidden Markov
models) [15] or spatio-temporal signal analysis techniques [7,
10,11] to detect and segment, store, analyse and exchange
information is usually necessary.
It is also evident that the effort dedicated to the system
intelligence depends greatly on the type of information that
different sensors provide. For instance, a smoke detector does
not provide as much data as a video camera; therefore the latter
requires a more elaborated processing.

Another issue to consider is the ability to control sensors
working conditions. For instance, directional sensors have to be
oriented according to height and width (two axes of movement)
and in depth (e.g. applying a zoom), with operations of the type:

• zoom-In and zoom-Out. To control the depth of the zoom in
cameras and the signal gain in microphones.

• move-Up, move-Down, move-Left and move-Right. To
control the movement of the sensor in vertical and horizontal
axis.

For sensors in mobile devices, typically in mobile robots, it
is necessary to decide the states of movement in the platform:

• drive-Straight, drive-Left and drive-Right. The direction that
the platform will follow. It will be straight, left, or right, in
case of a platform moving in a horizontal plane. For an aerial
platform it has to be specified also whether to go up or down.

• engine-Ahead, engine-Back and engine-Stop. To specify the
sense of advance of the platform or to apply a break.

Note that sensors movement implies that there should be a
map that indicates where sensors can move. This is considered
later in the design of the MAS as a resource (see Section 4).

All these are elements to consider during the analysis of
system requirements. The functionality that the system must
provide for the end user, here a security guard, can be described
with a use case diagram, as depicted in Fig. 1. The user of the
system, which is represented by the role Guard on the left of the
figure, can perform certain operations, such as: manage a map
to define the environment to watch and locate sensors, solicit
the inspection of concrete areas, correlate several alarms and
track mobile objects. These are represented in the diagram as
use cases. In this respect, INGENIAS methodology uses the
same mechanism as UML in order to specify requirements.
What is interesting here is that use cases can facilitate the
identification of system goals, which determine the purpose of
the MAS (goals associated to the use case are represented on
the right of the figure). The meaning of the different use cases
is as follows:

• Map management. There is a map in order to have an
account of where each sensor is and what kind of sensory
input is being received in each area. The nature of the sensor
determines the kind of information it provides. For instance,
a movement sensor only indicates the absence or existence of
movement, and an area having only this kind of sensor will
not be able to provide other information, such as an image
of a subject.

• Secure zones. The purpose of this use case is to ensure that
security measures are executed when needed. To do so, it is
required first to decide when a security risk occurs, which is
represented in the figure as use case Area Inspection. In case
some intervention is needed, there are several alternatives,
such as tracking mobile subjects or performing appropriate
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Fig. 1. Use case diagram showing end user functional requirements and the association of goals to use cases.
security measures (e.g. to locate human users and resources
that can handle this security risk). These are shown in the
figure as other use cases that extend the basic functionality
of the use case Secure zones.

• Area inspection. Knowing which sensors are available, a
policy of surveillance should be defined and applied. This
policy would tell how to monitor areas when mobile sensors
are available and how to integrate and/or combine the input
of different sensors to guess what is happening in an area.
Static sensors will be used to inspect fixed areas, but the
information obtained is not always meaningful. Also, the
specialization of the sensors in the sensor network may
lead to deficiencies. For instance, knowing that something
is moving in an area is good, but in order to identify
the relevance of the event, an image of the object could
be needed. A good sensor network may combine different
types of sensors according to the needs of each area. This
could be too expensive, since every area would require
every kind of sensor. An intelligent use of mobile sensors
may permit to alleviate these deficiencies. So, having a
camera mounted on a mobile platform together with a cheap
movement sensor network, may allow the system to have a
reasonable surveillance. However, this adds new challenges
since decisions have to be taken about what to monitor and
where.

• Alarms correlation. When an alarm occurs, this means
that an event considered as relevant by a sensor has
been triggered. Whether this alarm is meaningful for the
system is something to be decided later on, when other
sensors are consulted. For instance, a movement sensor may
trigger intruder warning events constantly during working
hours. Consulting biometric sensors can help to evaluate
the relevance of these events. This way, when movement
is detected a voice recognition software could be used to
identify the subject and determine if the alarm should be
triggered.

• Mobile subject tracking. Elements that trigger meaningful
alarms usually move from one area to another until they find
what they are looking for, perhaps an expensive equipment
or important documents. Once a hostile element is located,
it is necessary to know in every moment where it is, so
that active security measures can be taken. This is especially
difficult if there are several hostile elements at the same time,
since they have to be tracked simultaneously.

• Perform security measures. This use case would imply
deciding what action should be taken. It may be necessary
to contact the policy or, in case of a fire, the firemen and
ambulances. If it is an intruder, the local security forces
could try to isolate the intruder so that the police, at their
arrival, just get the subject.
Use cases facilitate requirements elicitation in a software

development process. In the development of MAS, use cases
correspond usually to organization goals: the purpose of the
MAS. These goals have been identified in Fig. 1 and they
represent the state of the system that the use case intends to
achieve:

• Sensor location is known. The system knows the area in
which each sensor is located.

• Security risks handled. Each security risk has been
considered and measures to deal with it have been executed.

• Security risks neutralized. The security risk has been
neutralized by the security measures executed.

• Intruder tracked. An intrusion has been detected and tracked
along the monitored map.

• Alarm relevance evaluated. The relevance of an event has
been considered by the system. As a result the alarm was
considered as a security risk or simply a non meaningful
event.

• Security risks identified. A security risk has been identified
as a result of the monitoring of an area.

One way to go deeper into MAS specification is to break
down these goals into simpler ones up to a level where it is
possible to identify simple tasks able to satisfy those goals.
Note that several tasks can be envisaged to satisfy the same
goal. In fact, each use case may identify several possible
courses of action, so it makes sense that the goal can be
achieved in different ways as well. This kind of analysis is
interesting when the system’s purpose is clear but there are
several strategies to achieve it.

Another possibility is to consider organization workflows. If
they are well known, as is usually the case with surveillance
systems, they could provide intervention procedures. In this
case, the MAS offers facilities to support these workflows.



J. Pavón et al. / Robotics and Autonomous Systems 55 (2007) 892–903 897
Fig. 2. Organizational structure of the MAS.
Part of requirements analysis is precisely the identification of
workflows, which have been previously regulated, and these
workflows are the main activities to consider in the design.
Each use case will determine here one or more workflows
that establish relationships among tasks, which will result
in interactions among agents. Each task will be specified
by its responsible (a role or an agent), resources that are
required for its execution, inputs and outputs. All these aspects
are developed in next section in order to specify the MAS
architecture and components.

4. Design of the multiagent surveillance system

The architecture of the MAS that implements the control
of the surveillance system is defined by its organization
(Section 4.1). This identifies agents, how they are grouped,
and the roles they can play in the system. The design of
agent workflows and interactions shows how agents perform
collaborative plans to achieve system goals. This is illustrated
with an example in Section 4.2. Finally, the behavior of agents
is conceived as the evolution of their mental state, as it is shown
in Section 4.3.

4.1. MAS organization

The organizational structure of the MAS can be defined
at several levels. Fig. 2 shows the grouping of agents taking
into account their functionality. Each group consists of agents
that are specialized on particular devices or specific system
functionality. As such, there are sensor agents, which can
be grouped according to their capabilities, and a group
of coordination agents, which can specialize in particular
functions such as mobile objects tracking or an alarms
correlation agent to check the consistency of different events.

Other organizational structure levels can be defined, for
instance, taking into account the geographical position of
agents. This is important for some functions, such as the
coordination of sensors that is performed at the level of
areas. An area is a region of a map that is controlled by an
area manager. The tracking agent uses services from the area
manager to monitor events in a map. In this structural view of
the organization agents can play different roles, as in Fig. 3.
This figure shows as well other roles that agents must play.
Roles define functional responsibilities of agents.

In order to perform their operations, some agents need to
connect to one or several sensors. Sensors are represented as
entities of agent’s environment. In Fig. 4, for instance, agents
may have two types of sensors: Fixed Sensor and Vehicle
Sensor. The diagram specifies that these sensors notify agents
when some event occurs. On reception of one or some events,
agents perform a processing task, depending on the existing
monitoring needs.

Performing tasks may require agents to make use of some
components. For instance, Fig. 5 shows the Area manager
agent that plays the role Control area and pursues two goals,
Sensor location is known and Security risks handled. This
agent uses a Map as a resource in order to get information
on sensors locations and states. This component is represented
as a class with stereotype �Internal Application�, and a list
of operations that can be invoked by the agent. An Internal
Application represents a new piece of code developed ad hoc
to support part of the functionality of the agent.

4.2. Design of collaborative plans

Agents of the organization collaborate to achieve common
goals. Such collaboration is defined in terms of workflows,
which identify agents interactions and tasks. As an example,
this section focus in the goal Sensor location is known. Fig. 6
indicates that the workflow Area registration management is a
collaborative plan to achieve this goal. At any moment, there
may be a different number of sensors subscribed to an area.
This makes necessary a workflow to manage subscriptions in
an area. Fixed sensors will use this protocol once, but mobile
sensors may need to register and unregister several times while
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Fig. 3. Agent roles to manage area distribution.

Fig. 4. Physical devices representing hardware interfaces.

Fig. 5. Area manager agent definition.
moving from one area to another. The workflow is detailed in
Fig. 7, with a representation that resembles activity diagrams in
UML. This diagram shows that the ability to register in an area
requires the existence of two agents that play two roles: control
area and sensor register. The synchronization for the execution
of the corresponding tasks is specified with an interaction.

The figure shows that the subscription request starts with
an Area registration request task. This is followed by Process
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Fig. 6. Workflow that satisfies the goal Sensor location is known.

Fig. 7. Workflow to manage subscription and unsubscription to an area.
area registration request task, which updates the definition of
the corresponding area in order to take into account the new
sensor. For simplification of the presentation here, the parts
corresponding to refusal are not shown, but they would follow
the Process area registration request task according to the
workflow.

Later on, the agent playing role Sensor Register will request
to unregister in an area, request that is processed by task
Process sensor unsubscription. Alternatively, an area controller
can decide to expel a sensor. This could be the case of a faulty
sensor that provides signals that do not correspond to those
reported by others. As the task Reject sensor is only considered
in this circumstance, it could be not necessary to inform the
rejected element.

The workflow describes the order in which tasks can be
executed. Nevertheless, it has to be specified also how agents
communicate during the execution of the workflow. This aspect
is studied with interactions. Associated interactions are defined
in interaction diagrams as in Fig. 8. Since Area registration
interaction and Area registration management workflow refer
to the same elements but from different points of view, it
makes sense to declare that the interaction is pursuing the
same goal, Sensor location is known. This goal association is
useful to indicate how this interaction contributes to the global
functioning of the system, specified by its purpose. Participants
in interaction are roles that are played by some of the known
agents, which match the roles participating in the workflow.

The registration protocol requires the synchronization of
four tasks (see Fig. 8). The interaction unit registration
request transfers the request that has been elaborated by task
Area registration request to the agent that plays the role
Area Control. As a consequence, this agent processes task
Process area registration request. Similarly, the interaction
unit Unsubscription request contacts with Area Control to
communicate the result by executing task Exit Area. The task
reject sensor, shown in Fig. 7, is not included in this protocol
since it corresponds to an internal operation that does not
require any communication.

By refining interactions design and workflows it is possible
to describe the behaviour of the agents. Each agent has a mental
state that consists of its goals (responsibilities assigned to
agents in the workflows) and beliefs (which can result from the
execution of tasks). Moreover, transition rules for agents will
be determined by association of mental states and tasks in agent
diagrams. All this information is taken by the IDK to generate
the code for each agent, as it is explained later in Section 5.

4.3. Goal satisfaction and failure

The specification of agents behaviour requires also the
definition of the conditions for goal satisfaction (and failure).
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Fig. 8. Interaction description for requesting the area registration in an area.

Fig. 9. Association of mental state required to send an area registration request.
The means to achieve a goal are declared by associating
a satisfaction relationship between a task/plan/workflow and
a goal. Similarly, the failure relationship declares when the
intention to achieve a goal has failed. Fig. 9 shows a way of
satisfying the goal Sensor location is known. This way implies
executing the task reject sensor which appears in Fig. 7 as part
of the map management workflow. This task removes a sensor
from an area knowing that a given sensor does not work well.
The removal is performed by means of methods provided by
the map application. In this case, an application stands for a
component that offers certain manipulation methods.

The condition under which the goal sensor location is
known is satisfied when executing the task reject sensor appears
in Fig. 10. This condition refers to the size of the known
malfunctioning devices. If the fact sensor malfunction exists,
see Fig. 9, this means that the size of the list of malfunctioning
sensors is not zero. Therefore, when the size of this list is
zero it means that the sensor has been removed from the area.
Readers will agree that such operation is not subject to a failure,
but in case it was we should define another similar condition
representing when the task is considered as failed.

5. Generating the application

From the MAS specification, it is possible to produce a
working implementation of the software for the surveillance
system. The IDK provides facilities to build code generation
modules by using code templates (more details can be found
at [16]). To generate the deployment of the system it is
convenient to provide the code generator a description of
how many entities of what types will be required in the
final application. Fig. 11 presents a possible configuration of
such a deployment. With this information, code generators
can provide the appropriate installation scripts. Reusing the
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Fig. 10. Mental state required to considered satisfied goal sensor location is known when executing reject sensor task.

Fig. 11. Deployment configuration for the first experiment.
agent types listed in Fig. 2, a brand new surveillance system
is produced. The number and type of entities is configurable,
so the developer can decide at any moment to modify the
size of the system. Together with the specification of MAS
organization, the scalability can be managed.

For this configuration, the system generates specialized
scripts that launch the configured number of agents. As
an example, Fig. 12 presents a snapshot of the generated
surveillance system, running on a testing module of IDK (this
module facilitates debug of agents behaviour and interactions,
as it shows the evolution of agents’ mental states and allows the
developer to select interactions to execute). The figure shows
the mental state of one of the three area manager agents defined
in Fig. 11. The total number of agents deployed is 24. To the
right, the initial mental state of the agent is shown. This mental
state is extracted from the information contained in diagrams
like the one in Fig. 5. In concrete, it enumerates the initial goals
of the agent together with the identification of the agent. Agents
must have a reference to themselves in the mental state so that
they can supply an identity when talking with other agents.

6. Conclusions

Intelligent surveillance systems consist of a great diversity of
entities that have to cooperate in highly dynamic and distributed
environments. The use of agents for their control allows a
greater degree of autonomy and response because of their
capabilities to adapt and cooperate. This increases the flexibility
of the design but it also requires certain methodological
discipline as the number of components in the system is large
and their interrelations can be complex. For this reason we
have considered the use of an agent-orientated methodology,
INGENIAS, for its development. Essentially, this kind of
methodology facilitates the definition of organizational aspects,
from which agents’ functionality, behaviour and interactions
can be refined. The organizational view of the system helps
also to integrate workflows, already known in the management
of surveillance systems, what makes more understandable the
design of the MAS to experts in surveillance systems and
not only to software engineers. Moreover, the design of the
system using agents facilitates the gradual incorporation of new
functionality and services by including new agents, for instance
to define new coordination tasks.

To make more effective the methodological development the
availability of support tools is really important. In this case, the
IDK allows to customize automatic code generation on different
platforms, which is especially useful in this context as there
are different computing platforms in a surveillance system.
This allows us to perform a design where all components are
considered in an integrated way, at the same level of abstraction
(platform independent) and subsequently to generate specific
code for each component in its particular execution platform.

Finally, the metamodelling foundation of IDK suggests, as
future work, the possibility of defining a specialized language
for building control configurations for intelligent multi-sensor
surveillance systems. This language would combine agent
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Fig. 12. Snapshot of the application testing module running the configured agents.
concepts with surveillance system concepts. For instance, there
could be a macro concept for area surveillance activities
representing all required actions and actors in order to register
events in a concrete area. This concept would subsume as
well information flows with other implicated actors, like the
control area role already presented in this paper. Therefore, this
workflow would be equivalent to several workflows presented
here. This would help to prove domain-specific concepts can
reduce the time invested in specification tasks.
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