

A COMPARATIVE OF GOAL-ORIENTED
APPROACHES TO MODELLING

REQUIREMENTS FOR COLLABORATIVE
SYSTEMS

Technical Report # DIAB-11-03-1

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero, Pascual González
March 2011

A collaborative system is a software allowing several users to work together and carry out collaboration,
communication and coordination tasks. To perform these tasks, the users have to be aware of other user’s
actions, usually by means of a set of awareness techniques. However, when these systems have to be
specified for development severe difficulties emerge to describe the requirements associated to these special
functionalities, usually considered non-functional requirements. Therefore, the selection and use of proper
requirements engineering techniques becomes a challenging and important decision. In this paper three
Goal-Oriented approaches, namely NFR framework, i* and KAOS, are evaluated in order to determine which
one is the most suitable to deal with this problem of requirements specification in collaborative systems.

A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO

MODELLING REQUIREMENTS FOR COLLABORATIVE

SYSTEMS

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero, Pascual González
LoUISE Research Group, Computing Systems Department, University of Castilla - La Mancha

MiguelAngel.Teruel@uclm.es, Elena.Navarro@uclm.es, victor@dsi.uclm.es, fmontero@dsi.uclm.es,

pgonzalez@dsi.uclm.es

Keywords: Goal-Oriented, KAOS, NFR, i*, Collaborative Systems, CSCW, Awareness, Requirements Engineering,

Non-Functional Requirements, Quality

Abstract: A collaborative system is a software allowing several users to work together and carry out collaboration,

communication and coordination tasks. To perform these tasks, the users have to be aware of other user’s

actions, usually by means of a set of awareness techniques. However, when these systems have to be

specified for development severe difficulties emerge to describe the requirements associated to these special

functionalities, usually considered non-functional requirements. Therefore, the selection and use of proper

requirements engineering techniques becomes a challenging and important decision. In this paper three

Goal-Oriented approaches, namely NFR framework, i* and KAOS, are evaluated in order to determine

which one is the most suitable to deal with this problem of requirements specification in collaborative

systems.

1 INTRODUCTION

A collaborative system (a.k.a. Computer Supported

Cooperative Work system, CSCW system) is a

software whose users can perform collaboration,

communication and coordination tasks. Unlike a

conventional single-user system, a CSCW system

has to be specified by using a special set of

requirements of non-functional nature. These

requirements usually result from the users' need of

being aware of the presence and activity of other

remote users with who to perform the above

mentioned collaborative tasks, that is, the

Workspace Awareness (WA).
Workspace Awareness is the up-to-the-moment

understanding of another person’s interaction within
a shared workspace. Workspace awareness involves
knowledge about where others are working, what
they are doing now, and what they are going to do
next (Gutwin and Greenberg, 2002). Gutwin et al.
presented a conceptual framework to establish what
information makes up workspace awareness. This
information is obtained by answering the questions

“who, what and, where” (see Table 1). That is, when
we work with others users in a physical shared
space, we know who we are working with, what they
are doing, where they are working, when various
events happen, and how those events happen.

Table 1: Elements of Workspace Awareness

Category Element Specific questions

Who

Presence

Identity

Authorship

Is anyone in the workspace?

Who is participating? Who is

that?

Who is doing that?

What

Action

Intention

Artefact

What are they doing?

What goal is that action part

of?

What object are they working

on?

Where

Location

Gaze

View

Reach

Where are they working?

Where are they looking?

Where can they see?

Where can they reach?

In this context, a proper specification of the

system, identifying clearly the requirements of the
system-to-be, specially the awareness requirements,
is one of the first steps to overcome this problem.

The awareness requirements can be considered non-
functional requirements (NFR) or extra-functional
requirements (EFR), because they are usually
constraints regarding quality (e.g. functionality,
usability) (Hochmuller, 1999). However, the
specification of this kind of requirements is not a
trivial issue, because of the high number and
diversity of requirements they are related to, and
their high impact in terms of the final architecture of
the system. Therefore, the proper selection of the
requirement specification technique becomes a
challenging and important decision.

In a previous work (Teruel et al., 2011) it was
analyzed which technique, Goal-Oriented (GO), Use
Cases or Viewpoints is more appropriate to specify
the requirements of collaborative systems and it was
determined that GO provides more facilities for this
kind of systems. In this paper, we study the
applicability of three Goal Oriented (GO)
approaches (NFR Framework (Cysneiros and Yu,
2003), i* Framework (Castro, Kolp and Mylopoulos,
2001) and KAOS Methodology (van Lamsweerde,
2001)) for the specification of collaborative systems,
paying special attention to the awareness
requirements. In order to carry out this study, the
awareness requirements of a real system (Google
Docs (Google, 2011)) were specified. After
modelling the system, an empirical analysis was
conducted in order to compare these different
techniques goal-oriented techniques.

This paper is structured as follows. After this
introduction, in section 2, the selection of GO
techniques for modelling this kind of systems is
justified. In section 3, three GO approaches
applicable to awareness requirements for
collaborative systems are analysed. In section 4, an
example of a widely known collaborative system is
presented: Google Docs. In section 5, an empirical
evaluation of the previous techniques for modelling
awareness requirements in Google Docs is
presented. Finally, some conclusions and future
works round up this work.

2 RELATED WORKS

This paper is a follow-up of the work presented in

(Teruel et al., 2011), where we analysed different

Requirement Engineering techniques applied to

collaborative systems. The main result of this

evaluation was that the most appropriate technique

for this kind of systems is Goal Oriented (GO).

Nevertheless, in (Teruel et al., 2011) the evaluation

did not focus on a specific GO proposal.
In the context of Requirements Engineering, the

GO approach (van Lamsweerde, 2001) has proven

its usefulness for eliciting and defining
requirements. More traditional techniques, such as
Use Cases (Cockburn, 2000), only focus on
establishing the features (i.e. activities and entities)
that the system-to-be should support. Nevertheless,
GO proposals focus on why systems are being
constructed by providing the motivation and
rationale to justify the software requirements
specification. They are not only useful for analyzing
goals, but also for elaborating and refining them.

A GO model can be specified in a variety of
formats, by using a more or less formally defined
notation. These notations can be informal, semi-
informal or formal approaches. Informal approaches
generally use natural language to specify goals;
semi-formal use mostly box and arrow diagrams;
finally, in formal approaches goals are expressed as
logical assertions in some formal specification
language (Kavakli and Loucopoulos, 2004). No
matter its formality, a goal model is built as a
directed graph by means of a refinement of the
systems goals. This refinement lasts until goals have
enough granularity and detail so as to be assigned to
an agent (software or environment) so that they are
verifiable within the system-to-be. This refinement
process is performed by using AND/OR/XOR
refinement relationships.

There are a wide number of proposals ranging
from elicitation to validation activities in the RE
process (see (Kavakli and Loucopoulos, 2004) for an
exhaustive survey). However, some concepts are
common to all of them:
 Goal describes why a system is being developed,

or has been developed, from the point of view of
the business, organization or the system itself. In
order to specify it, both functional goals, i.e.,
expected services of the system, and softgoals
related to the quality of service, constraints on
the design, etc should be determined.

 Agent is any active component, either from the
system itself or from the environment, whose
cooperation is needed to define the
operationalization of a goal, that is, how the goal
is going to be provided by the system-to-be. This
operationalization of the goals is exploited to
maintain the traceability throughout the process
of software development.

 Refinement Relationships: AND/OR/XOR
relationships allow the construction of the goal
model as a directed graph. These relationships
are applied by means of a refinement process
(from generic goals towards sub-goals) until
they have enough granularity to be assigned to a
specific operationalization.

It must be pointed out that one of the main
advantages exhibited by this approach is that it
introduces mechanisms for reasoning about the
specification. It facilitates the process of evaluating
designs or alternative specifications of the system-
to-be (Teruel et al., 2011)(Chung et al., 2000). In
this work, three different GO proposals are used to
model the requirements of a collaborative system:
Google Docs. This system will allow us to evaluate
which proposal is the most useful to describe the
requirements of the so called workspace awareness.

3 GOAL ORIENTED

PROPOSALS: AN ANALITICAL

BACKGROUND

This section presents briefly the GO proposals, NFR,

i* and KAOS, analyzed to determine which one is

the most appropriate for specifying collaborative

systems. They are used in section 5 to describe the

running example in order to perform the evaluation.

3.1 NFR Framework

This GO proposal was proposed by (Cysneiros and

Yu, 2003) and aims at dealing with Non-Functional

Requirements (NFRs), also known as Quality

Requirements. Unlike Functional Requirements,

NFRs specify constraints for the system, as well as

particular notions of quality factors a system should

meet, such as, accuracy, usability, safety,

performance, reliability or security. Hence, it can be

stated that while functional requirements describe

“what” the system will do, NFRs constraint “how”

the system will accomplish the “what”. As a

consequence, NFRs are always linked to a

Functional Requirement.
To elicit NFRs, the authors propose the use of a

strategy anchored in Language Extended Lexicon
(LEL) (Sampaio and Franco, 1993). LEL is based on
a controlled vocabulary system made up of symbols
being each one of them an entry expressed in terms
of notions and behavioural responses. A notion
records the meaning of a symbol and its fundamental
relationships to other entries. A behavioural
response specifies the connotation of a symbol in the
universe of discourse. Each symbol may also be
represented by one or more aliases and will be
classified as a subject, a verb or an object. Once the
Lexicon is finished, it is enriched with NFRs by
using a knowledge base, presented as catalogues, to
guide the analyst to select the likely needed NFRs
and their related operationalizations.

According to the NFR Framework, NFRs goals
can conflict among them and must be represented as
softgoals to be satisfied. Each softgoal is
decomposed into sub-goals represented by a graph
structure inspired by the And/Or trees used in
problem solving. This decomposition is done by
using contribution links. Contribution links can be
categorized as either or contributions or and
contributions. Contribution links allow one to
decompose NFRs to the point that one can state that
the operationalizations of the related NFR have been
met. Operationalizations are decisions about the
system to meet NFRs. The elements of the NFR GO
model can be seen in Figure 1.

Figure 1: Elements of the NFR Framework model

3.2 The i* Framework

The i* Framework (Castro, Kolp and Mylopoulos,

2001) consists in an approach for dealing with

requirements in various phases of the software

development process (Early and Late Requirements

Analysis, Architectural and Detailed Design).

Figure 2: Elements of the i* Framework model

During early requirements analysis, the

requirements engineer gathers and analyzes the
intentions of stakeholders. These are modelled as
goals which, through some form of a goal-oriented
analysis, eventually lead to the functional and non-
functional requirements of the system-to-be. In i*,
early requirements are assumed to involve social
actors who depend on each other for goals to be
achieved, tasks to be performed, and resources to be

furnished. The i* framework includes the strategic
dependency model for describing the network of
relationships among actors, as well as the strategic
rationale model for describing and supporting the
reasoning that each actor goes through concerning
its relationships with other actors. The model
elements can be seen in Figure 2.

Late Requirements Analysis results in a
requirements specification which describes all
functional and non-functional requirements for the
system-to-be. In Tropos (Mylopoulos, Castro and
Kolp, 2000), a framework for requirements-driven
software development, the information system is
represented as one or more actors who participate in
a strategic dependency model, along with other
actors from the system’s operational environment. In
other words, the system comes into the picture as
one or more actors who contribute to the fulfilment
of stakeholder’s goals.

During architectural design we have to select
among alternative architectural styles by using as
criteria the desired qualities identified earlier in the
process. The analysis involves refining these
qualities, represented as softgoals, to sub-goals that
are more specific and more precise and then
evaluating alternative architectural styles against
them.

The detailed design phase is intended to
introduce additional details for each architectural
component of a system. To support this phase, the
authors propose to adopt existing agent
communication languages and message
transportation mechanisms among other concepts
and tools.

3.3 KAOS Methodology

The KAOS modelling language is part of the KAOS

framework (van Lamsweerde, 2001) for eliciting,

specifying, and analysing goals, requirements,

scenarios, and responsibility assignments. A KAOS

model entails six complementary views or sub-

models (goal, obstacle, object, agent, operation and

behaviour model) all of them related via traceability

links (Pohl, 2010).
Figure 3 depicts the basic constructors for

documenting agents responsibilities for goals
provided by the KAOS framework.

KAOS has the following elements:
 Goal: A goal describes a set of admissible

system behaviors. Goals should be defined in a
clear-cut manner so that one can verify whether
the system satisfies a goal or not.

 Softgoal: In KAOS, softgoals are used to
document preferences among alternative system
behaviors. In a similar way to i*, there is no

clear-cut criterion for verifying the satisfaction
of a softgoal. Softgoals are hence expected to be
satisfied within acceptable limits.

Figure 3: Basic constructs of the KAOS framework for

modelling goals and assigning agents responsibilities for

goals to

 Agent: While i* focuses primarily on agents
within organizational structures, the agents
defined in KAOS primarily relate to users and
components of software-intensive systems.
Therefore, an agent is defined as an active
system component which has a specific role for
satisfying a goal. An agent can be a human
agent, a device or a software component.

Dependencies between goals are represented in
the KAOS goal model by using AND/OR-
decompositions and conflict links. In KAOS, goals
can be assigned to agents by means of responsibility
assignment links. We briefly explain these goal
dependencies:
 AND/OR-decomposition: An AND-OR

decomposition link relates a goal to a set of sub-
goals, documenting that the goal is satisfied if
all, or at least one sub-goal, is satisfied.

 Potential conflict: This link documents that
satisfying one goal may prevent the satisfaction
of other goal under certain conditions.

 Responsibility assignment: This link between a
goal and an agent means that this agent is
responsible for satisfying the goal.

4 RUNNING EXAMPLE

As running example to assess how these GO

approaches perform for collaborative system,

Google Docs (Google, 2011) (see Figure 4) has been

used from now on in this paper. Google Docs is a

free, Web-based word processor, spreadsheet,

presentation and form editor whose data storage

service is provided by Google. Google Docs serves

as a collaborative tool for editing documents so that

they can be shared, opened, and edited by multiple

users at the same time. This system was selected for

our analysis because it is widely-known and it

features a clear collaborative focus as its main goal.

Figure 4: Google Docs interface

As a starting point for our evaluation of the
requirements techniques, we identified those design
solutions for awareness requirements in Google
Docs from the set of techniques proposed by Gutwin
(Gutwin, Greenberg and Roseman, 1996). These
techniques, which are commented in the following
subsections, can be found also as patterns for user
collaboration in (Schümmer and Lukosch, 2007).

4.1 Remote Cursors

This technique, based in Gutwin’s telepointers

(Gutwin, Greenberg and Roseman, 1996), allows us

to be aware of the other user’s cursor position and

whether they have selected a text fragment or not

(see Figure 5). Thus, when a remote user is writing

other users can notice it in real-time. Close to the

cursor the user’s nickname appears overlapped with

the text. In addition, if the user selects some text, it

is highlighted by marking it with the user's colour.

Figure 5: Remote cursor and remotely selected text

fragment

4.2 Participant List & Chat

Google Docs does not implement Gutwin’s avatar

(Gutwin, Greenberg and Roseman, 1996) technique

itself. Instead it shows a list of participants that are

editing simultaneously the same document (see

Figure 6). By using this list, users can communicate

with each other by using a chat, which can be shown

or hidden at any time. In addition, by using this chat

view, users can notice the colour assigned to each

one of their collaborators.

Figure 6: Two users chatting through the participant list

4.3 Revision History

The techniques identified by Gutwin expressing

information about authorship / about the past

(Gutwin, Greenberg and Roseman, 1996) are used to

make available to the users the history of changes

carried out. They have been implemented by Google

Docs by using a revision history. It allows the

system to keep track of all the changes made by the

users to the different types of documents being

edited (see Figure 7). This revision history provides

a mean for users to review the changes made to the

documents. In this revision history the changes made

by each user are denoted by using different colours.

In addition, if the change made is a deletion, then the

text will be also in strikethrough style. This

functionality can be activated or deactivated at

anytime. This revision history has two levels of

detail, depending on the amount of shown

information. The user may switch between these two

levels of detail at anytime.

Figure 7: Revision story showing text elimination

5 EMPIRICAL EVALUATION

To evaluate the different GO approaches mentioned

in section 3, each one of the above mentioned

awareness features is modelled in the following by

using the different techniques. First, we have to

distinguish what Google Docs characteristics can be

modelled by using functional or non-functional

requirements. The telepointer and avatar techniques

result in NFRs because they contribute to increase

some operability, such as ease of use and

helpfulness. Nevertheless, the third characteristic

(Expressing information about authorship / about

the past), despite contributing positively to the

above mentioned quality features, it should be

considered functional, due to the historical

information storage and the rollback function. In

addition, we have also associated the awareness

functionalities both with the three characteristics of

the collaborative systems (collaboration,

communication and coordination) and, with the

characteristics of the ISO/IEC 25010 (Software

engineering - Software product Quality

Requirements and Evaluation (SQuaRE) Quality

model, 2008). This standard has been used to

organize properly the specification of the system

following the recommendations of Moreira et al.

(Moreira, Araújo and Rashid, 2005). Next, the

evaluation is presented following the chronological

order it was carried out. First, in section 5.1 it is

described how the case study was modelled by

applying the three approaches. Second, in section

5.2, the results of the evaluation are presented.

5.1 Modelling the Running Example

After analyzing the characteristics of Google docs

described in section 4, and according to Gutwin's

framework for collaborative systems, we have

specified the systems’ FRs (Table 2 illustrates a

partial description of the system). Next, as can be

observed in Table 3, each awareness functionality

feature detected in the system has been related to

some quality factors in the SQuaRE standard, in

order to identify the NFRs of Google Docs. For the

sake of clarity, and understanding of the evaluation,

only some requirements of Google Docs are

described.

Table 2: Relation between awareness elements and FRs

Category Element
Functional

Requirement

Who Presence
Know who is

participating

What

Where

Action

Location
See other user’s actions

Who

When

Authorship

Event history

Keep the changes’

authorship

Table 3: Relation between quality factors and awareness

functionalities

Quality Factor Awareness Functionality

Functional Suitability

Revision History

Telepointers

Participant List

Reliability Revision History

Performance Efficiency Telepointers

Operability
Telepointers

Participant List

Security Revision History

5.1.1 The NFR Framework

In this approach, the SQuaRE quality factors have

been modelled by using softgoals. Nevertheless, the

SQuaRE standard was used instead of the NFR

collections proposed by (Cysneiros and Yu, 2003)

definition to create the NFR hierarchy. Thus, it can

be observed the impact that the quality sub-

characteristic has on main characteristic by means of

contribution links. In the same way, each

characteristic contributes to achieve the software

product quality (see Figure 8).
The problem here is that we are not able to

represent the Functional Requirements (because this
model aims only at non-functional ones), therefore
the three general tasks of collaborative systems
(collaboration, communication and coordination)
cannot be defined. This lack of expressiveness led us
to have an incomplete representation of system's
requirements, so that we have to use additional
models or extend this framework.

5.1.2 The i* Framework

In order to carry out the specification of Google

Docs, the i* notation was used. Using this notation,

we specified each one of the SQuaRE quality factors

previously identified in Table 3, as root softgoals of

the system as shown in Figure 9. These softgoals

were refined into other softgoals by selecting those

SQuaRE quality factors more appropriate for the

system. Each one of the awareness functionalities

were specified as resources provided by the system

that contribute positively to satisfy some of the

softgoals, that is, some quality factors. However, it

can be noticed that also some of them contribute

negatively because the constraints they impose. This

is the case of remote cursors, because they increase

the resource utilization. Moreover, the ease of use

depends, among other factors, on the user’s

experience with this kind of systems. In addition, the

three FR identified in Table 3 have been specified as

goals of the system that have dependency

relationships with the resources. It has been also

specified how the awareness techniques contribute

positively to the functional aspects of collaborative

systems specified as tasks in the goal model.

Figure 8: NFR Goal-Oriented model

Figure 9: i* Strategic Rationale Model

Quality
Criteria

Quality
Factor

Goals, Tasks
and resources

Quality
Criteria

Quality
Factor

Operationalization

Figure 10: KAOS Goal and Responsibility Model

5.1.3 KAOS Methodology

To model the system using this methodology, and

unlike i*, the model was decomposed in three sub-

models as can be seen in Figure 10. Hence, the

individual models represent (a) awareness goals, (b)

collaborative systems goals and (c) software quality

goals.
These diagrams (Figure 10) show three main

goals and its decomposition in its sub-goals. The
implemented awareness techniques have been
represented here by using agents, because this

element is used to represent responsibility
assignment when using KAOS.

In addition, Figure 10c illustrates a potential
conflict between two softgoals related to two quality
sub-factors: avoid resource utilisation and achieve
attractiveness. Usually, a very attractive user
interface will cause a higher resource utilisation.
This conflict is denoted in the graph by using a red
ray.

5.2 Evaluating GO approaches

Using as input the different specifications of the

system, the evaluation of the different RE techniques

was carried out by using DESMET (Kitchenham,

1993). It is a set of techniques applicable to evaluate

both Software Engineering methods and tools. We

have used the method based on a qualitative case

study that describes a feature-based evaluation.

Following the guidelines of this technique, an initial

list of features was prepared that a GO approach for

collaborative systems should provide (see Table 4).

As can be observed, some of those features are

directly related to the specification of NFRs.

Table 4: List of Features for approaches evaluation

Feature Description

FR and NFR

Representation

The model should be able to represent

graphically FR and NFRs and

differentiate them

Collaborative

Systems

Characteristics

The model has to represent the

collaboration, communication and

coordination characteristics

Awareness

Representation

The model should allow one to

represent the awareness

characteristics of the system

Quality Factors

Representation

The model must represent the

SQuaRE characteristics and sub-

characteristics

Importance of

Requirements

The model should represent the

importance and preference between

requirements

Hierarchical

Representation

The relation between the model

elements should be hierarchical

Model

Complexity

The model complexity should not be

too high

Quantitative

Model

The model must allow one to quantify

the relations between represented

elements

Traceability
The represented requirements should

be traceable throughout the software

development process

Once Table 4 is filled in, DESMET establishes
that an importance degree should be assigned to
each identified feature. Specifically, the degrees to
apply are:
 M: Mandatory

 HD: Highly Desirable

 D: Desirable

 N: Nice to have

By using these degrees, Table 5 was filled in. As
can be noticed, the most important features to be
supported are both the NFR representation and the
traceability required by collaborative systems.

Table 5: Importance of the features

Feature Importance

FR and NFR Representation M

Collaborative Systems Characteristics M

Awareness Representation M

Quality Factors Representation HD

Importance of Requirements HD

Traceability HD

Quantitative Model D

Hierarchical Representation D

Model Complexity N

Next, according to DESMET, a scale to evaluate
each one of the described features should be
provided. The scale proposed by DESMET (see
Table 6) was applied to evaluate each feature
according to the following factors:
 CAT: Conformance Acceptability Threshold.

 CSO: Conformance score obtained for candidate
method.

Table 6: Judgement scale to assess support for a feature

Generic scale

point
Definition of Scale point

Scale Point

Mapping

Makes things

worse

Cause Confusion. The way the feature is represented makes difficult its modelling and/or

encourage its incorrect use
-1

No support Fails to recognise it. The approach are not able to model a certain feature 0

Little support
The feature is supported indirectly, for example by the use of other model/approach in a non-

standard combination
1

Some support
The feature is explicitly in the feature list of the model. However, some aspects of feature use

are not catered for.
2

Strong support
The feature is explicitly in the feature list of the model. All aspects of the feature are covered

but its use depends on the expertise of the user
3

Very strong

support

The feature is explicitly in the feature list of the model. All aspects of the feature are covered

and the approach provides a guide to assist the user
4

Full support
The feature appears explicitly in the feature list of the model. All its aspects are covered and

the approach provides a methodology to assist the user
5

Table 7: Evaluation for the NFR Framework

Feature Imp CAT CSO Dif Sco

FR and NFR

Representation
4 5 3 -2 -8

Collaborative

Systems

Characteristics

4 4 1 -3 -12

Awareness

Representation
4 4 4 0 0

Quality Factors

Representation
3 3 5 2 6

Importance of

Requirements
3 3 0 -3 -9

Traceability 3 3 3 0 0

Quantitative Model 2 2 1 -1 -2

Hierarchical

Representation
2 2 3 1 2

Model Complexity 1 1 3 2 2

Total -21

Once each feature was evaluated, the difference

between CAT and CSO factors was computed as
shown in the column Difference (Dif) in Tables 7, 8
and 9.

Table 8: Evaluation for the i* Framework

Feature Imp CAT CSO Dif Sco

FR and NFR

Representation
4 5 5 0 0

Collaborative

Systems

Characteristics

4 4 5 1 4

Awareness

Representation
4 4 5 1 4

Quality Factors

Representation
3 3 5 2 6

Importance of

Requirements
3 3 0 -3 -9

Traceability 3 3 3 0 0

Quantitative Model 2 2 1 -1 -2

Hierarchical

Representation
2 2 3 1 2

Model Complexity 1 1 1 0 0

Total 5

Next, we should highlight that a variation of the

DESMET method was used. The importance (Imp)
of each feature has been weighted in a scale from 1
to 4 (Nice to have – 1, Desirable – 2, Highly
Desirable – 3, Mandatory – 4). The importance was
used to compute the final score of each feature by
multiplying the Importance by the Difference. This

computation is shown in the column Score (Sco) in
Tables 7, 8 and 9. Lastly, the final score of each
technique (Total) was obtained by adding the scores
of all the features. This framework has been used to
evaluate all the different GO approaches studied.

Table 9: Evaluation for KAOS Methodology

Feature Imp CAT CSO Dif Sco

FR and NFR

Representation
4 5 5 0 0

Collaborative

Systems

Characteristics

4 4 4 0 0

Awareness

Representation
4 4 4 0 0

Quality Factors

Representation
3 3 4 1 3

Importance of

Requirements
3 3 0 -3 -9

Traceability 3 3 4 1 3

Quantitative Model 2 2 0 -2 -4

Hierarchical

Representation
2 2 4 2 4

Model Complexity 1 1 2 1 1

Total -2

Figure 11: Empirical analysis results.

Figure 11 shows graphically the scores obtained
by each one of the GO approaches. As can be
observed, the i* approach is the only one that has a
positive score. Despite this positive score, it has
been negatively evaluated for the Quantitative
Model feature, since i* only provides a partial
support for quantifying the relations among
requirements when using contribution links. The i*
approach also fails in representing the requirements
importance, giving no support to determine which
requirements are more important than others.
Nevertheless, the other two GO approaches also
share this lack of representation of the importance of
each requirement. KAOS also fails in the same
features than i* but, unlike this approach, KAOS

-25

-20

-15

-10

-5

0

5

10

NFR i* KAOS

obtains a lower (or the same) score in almost all
features except for the Hierarchical Representation
feature, thanks to its tree-based representation.
Finally, the NFR framework is the less suitable
approach, obtaining a very low score, because of
both the lack of expressiveness to specify FRs and
its lack of adaptability to represent Collaborative
Systems Characteristics.

In addition, as DESMET suggests, we have
performed a comparative of the percentage of each
feature satisfied by each analyzed GO approach.
Figure 12 illustrates that the NFR approach only
exceeds its competitors in the Model Complexity
feature, due to the simplicity of these models.

Similarly, this is the only feature KAOS supersedes
i*. Other meaningful fact is that no approach is able
to represent the importance of the requirements,
something that should be considered in future works.
Another significant result is that, despite i* and
KAOS have the same score for the feature FR and
NFR Representation, i* supersedes KAOS in the
most important features (mandatory and high
desirable ones) except for the Traceability feature.
Nevertheless, KAOS obtains a better score in the
less valuated features, like Hierarchical
Representation and Model Complexity

Figure 12: Results relative to distinct features

6 CONCLUSIONS AND

FURTHER WORK

After this empirical experiment, we can conclude

that the analyzed GO approaches are not fully

appropriate to model collaborative system

characteristics and its relationships with awareness

and quality requirements.
This conclusion, along with the results of (Teruel

et al., 2011), support our initial hypothesis: a
Requirement Engineering technique to address the
problems detected during this study is required. This
technique can adopt some features from those GO
approaches analyzed in this paper and should cover
the lack of expressivity in certain aspects, where
current GO techniques fail. This constitutes one of
our future and challenging works: to adapt/extend a
GO notation for this kind of systems.

In addition, another future work is the definition
of techniques that support that the defined models
can be used for validation purposes. That is, its

conformance with the SQuaRE Quality in Use
factors (usability, flexibility and safety) should be
evaluable in an easy and intuitive way, once the
system is fully developed.

ACKNOWLEDGEMENTS

This work has been partially supported by a grant

(DESACO, PEII09-0054-9581) from the Junta de

Comunidades de Castilla-La Mancha and also by a

grant (TIN2008-06596-C02-01) from the Spanish

Government.

REFERENCES

Booch, G., Rumbaugh, J. and Jacobson, I. (2005) The

Unified Modeling Language User Guide, Addison

Wesley.

0%

50%

100%

150%

200%

250%

300%

350%

FR and NFR
Representation

Collaborative
Systems

Characteristics

Awareness
Representation

Quality Factors
Representation

Importance of
Requirements

Traceability Quantitative
Model

Hierarchical
Representation

Model
Complexity

NFR

i*

KAOS

Castro, J., Kolp, M. and Mylopoulos, J. (2001) 'A

requirements-driven development methodology', 108-

123.

Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. (2000)

Non-Functional Requirements in Software

Engineering, Kluwer Academic Publishing.

Cockburn, A. (2000) Writting Effective Use Cases,

Addison-Wesley.

Cysneiros, L.M. and Yu, E. (2003) 'Non-Functional

Requirements Elicitation', in Sampaio do Prado Leite,

J.C. and Doorn, J.H. (ed.) Perspectives on Software

Requirements, Springer.

Cysneiros, L.M. and Yu, E. (2003) Non-Functional

Requirements Elicitation (Perspectives on Software

Requirements), Springer.

Finkelsetin, A., Kramer, J., Nuseibeh, B., Finkelstein, L.

and Goedicke, M. (1992) 'Viewpoints: A Framework

for Integrating Multiple Perspectives in System

Development', International Journal of Software

Engineering and Knowledge Engineering, vol. 2, no. 1,

pp. 31-57.

Franch, X. (2005) 'On the Lightweight Use of Goal-

Oriented Models for Software Package Selection',

CAiSE, 551-566.

Garrido, J.L. (2003) a

el Desarrollo de Sistemas Cooperativos Basada en

Modelos de Comportamiento y Tareas, PhD,

University of Granada.

Giorgini, P., Mylopoulos, J., Nicchiarelli, E. and

Sebastiani, R. (2004) 'Formal Reasoning Techniques

for Goal Models', Journal on Data Semantics, vol.

2800/2003, pp. 1-20.

Google (2011) Google Docs.

Google Inc. (2010) Google Docs, [Online], Available:

http://docs.google.com.

Gutwin, C. (1996) 'Workspace Awareness in Real-Time

Distributed Groupware', HCI '96 Proceedings of HCI

on People and Computers XI, 281-298.

Gutwin, C. and Greenberg, S. (2002) 'A Descriptive

Framework of Workspace Awareness for Real-Time

Groupware', Computer Supported Cooperative Work,

vol. 11, pp. 411-446.

Gutwin, C., Greenberg, S. and Roseman, M. (1996)

'Workspace Awareness in Real-Time Distributed

Groupware: Framework, Widgets, and Evaluation',

281-298.

Hochmuller, H. (1999) 'Towards the Proper Integration of

Extra-Functional Requirements', Australasian Journal

of Information Systems, vol. 6, no. 2.

Hochmuller, H. (1999) 'Towards the Proper Integration of

Extra-Functional Requirements', Australasian Journal

of Information Systems, vol. 6, no. 2.

Kavakli, E. and Loucopoulos, P. (2004) 'Goal Modeling in

Requirements Engineering: Analysis and Critique of

Current Methods', 102-124.

Kavakli, E. and Loucopoulos, P. (2005) 'Goal Modeling in

Requirements Engineering: Analysis and Critique of

Current Methods', Information Modeling Methods and

Methodologies, pp. 102-124.

Kitchenham, B. (1993) 'DESMET: A methodology for

evaluating software engineering methods and tools', in

Rombach, H., Basili, V. and Selby, R. (ed.)

Experimental Software Engineering Issues: Critical

Assessment and Future Directions, Springer Berlin /

Heidelberg.

Kruchten, P. (2000) The Rational Unified Process: An

Introduction, 2nd edition, Addison Wesley.

Moreira, A., Araújo, J. and Brito, I. (2002) 'Crosscutting

Quality Attributes for Requirements Engineering',

SEKE, 167-174.

Moreira, A.M.D., Araújo, J. and Rashid, A. (2005) 'A

Concern-Oriented Requirements Engineering Model',

293-308.

Moreira, A.M.D., Araújo, J. and Rashid, A. (2005) 'A

Concern-Oriented Requirements Engineering Model',

CAiSE, 293-308.

Mylopoulos, J., Castro, J. and Kolp, M. (2000) 'Tropos: A

Framework for Requirements-Driven Software

Development', 261-273.

Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994) 'A

Framework for Expressing the Relationships Between

Multiple Views in Requirements Specification', IEEE

Transactions on Software Engineering, vol. 20, no. 10.

Pohl, K. (2010) Requirements Engeneering:

Fundamentals, Principles, and Techniques, Springer.

Sampaio, J.C. and Franco, A.P.M. (1993) 'A Strategy for

Conceptual Model Acquisition', 243-246.

Schümmer, T. and Lukosch, S. (2007) Patterns for

Computer-Mediated Interaction, John Wiley \& Sons

Ltd.

Software engineering - Software product Quality

Requirements and Evaluation (SQuaRE) Quality model

(2008).

Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F.

and González, P. (2011) 'An Empirical Evaluation of

Requirement Engineering Techniques for Collaborative

Systems', 15th Empirical Assesment of Software

Engineering (Accepted), Durham, UK.

van Lamsweerde, A. (2001) 'Goal-Oriented Requirements

Engineering: A Guided Tour', Proceedings 5th IEEE

International Symposium on RE, Toronto, 249-263.

http://docs.google.com/

	tr
	ENASE 2011_v2

