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Resumen

In different fields of science and engineering (medicine, economy, oceano-

graphy, biological systems, etc) the False Nearest Neighbors (FNN) method is

particularly relevant. In some of these applications, it is important to give results

within a reasonable time scale, thus the execution time of the FNN method has

to be reduced. This paper describes two parallel implementations of the FNN

method for hybrid (shared and distributed) memory architectures. As far as the

authors know the hybrid implementation presented in this paper represents to

be the first parallel implementation. Moreover, by considering a hybrid imple-

mentation it is possible to take advantage of different parallel architectures due

to the fact that knowing the number of nodes and the number of cores by node,

the software is autotunned in order to exploit the maximum degree of paralle-

lism existing on the target machine. A “Single-Program, Multiple Data” (SPMD)

paradigm is employed using a simple data decomposition approach where each

processor runs the same program but acts on a different subset of the data. The

*This work has been partially supported by the Spanish CICYT projects CGL2004-06099-C03-
03/CLI and CGL2007-66440-C04-03.
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computationally intensive part of the method is mainly within the neighbors

search and therefore this task is parallelized and executed using from 2 to 64

processors. The accuracy and performance of the two parallel approaches are

then assessed and compared to the best sequential implementation of the FNN

method which appears in the TISEAN project [1]. The results indicate that the

two parallel approaches, when the method is run using 64 processors, is between

75 and 95 times faster than the sequential one. The efficiency is also discussed.

In the context of time saving with 64 processors compared to the best sequential

implementation, the time saving on the MareNostrum supercomputer are around

115 % to 145 %.

Keywords: Parallel Computing, Message Passing Interface, POSIX threads,

Physics, Nonlinear Time Series Analysis, Method of False Nearest Neighbors

1. Introduction

Dynamical systems are studied from two different view points. One is from a

previously known model which explains its behavior and the other is from a time series

carried out by means of successive data acquisition per constant time periods {si}
i=N
i=1 .

This becomes the basis of nonlinear time series analysis. This methodology is based on

the reconstruction of state space in a dynamical system from theorem of Takens [2]. The

basic idea is the dynamical states space M of a dynamical system with dimension m is

able to be characterized uniquely by m independent quantities. One of these systems

of independent quantities are the own coordinates of the phases space (more precisely,

the coordinates related to the basis that causes this phases space M).

yρ(t) = (y1(t), y2(t), . . . , yi(t), . . . , ym(t))τ (1)

The most important phase space reconstruction technique is the method of delay.

This technique takes m consecutive elements from the time series as coordinates in the
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phase space in order to find a vectorial space that contains the same information than

the original states space [3]. This implies transforming a set of scalar data of dimension

1 (the time series) into vectorial data of dimension m (the reconstructed space phase).

This phase space is the natural basis to formulate nonlinear time series algorithms

from the chaos theory, rather than the time or the frequency domain. Vectors in this

new space, the embedding space, are formed from time delayed values of the scalar

measurements:

−→s i = [s(i−(m−1)τ), ......., si−τ , si]
T i : 1, 2, 3, ......., N − (m − 1)τ (2)

All local information will be gained from neighborhood relations of various kinds

from time series elements. Thus a recurrent computational issue will be that of defining

local neighborhoods in the phase space [1].

In Eq. (2), the number m of elements is called the embedding dimension, the time

τ is generally referred to as the delay.

In practice, the natural questions are what time delay and what embedding di-

mension is the most appropriate for the reconstruction in the phase space. There are

several methods to find out the minimum embedding dimension, m, i.e. global embed-

ding dimension. A remarkable method is the method of False Nearest Neighbors (FNN)

proposed by Kennel et al. [4]. This method identifies the number of “false nearest neigh-

bors”, points that appear to be nearest neighbors because the embedding space is too

small, of every point on the attractor associated with the orbit y(n), n = 1, 2, ..., N .

When the number of false nearest neighbors drops to zero, we have unfolded or em-

bedded the attractor in R
d, a d−dimensional Euclidean space.

One of the important features of an attractor is that it is often a compact object in

phase space. Hence, points of an orbit on the attractor acquire neighbors in this phase

space. The utility of these neighbors is, for example, to allow the information on how
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phase space neighborhoods evolve to be used to generate equations for the prediction

of the time evolution of new points. They could also allow accurate computations of

the Lyapunov exponents of the system.

The basis of FNN method is the supposition that the minimal embedding dimen-

sion for a given time series xi is m0. This means that in a m0−dimensional delay space

the reconstructed system is a one-to-one image of the system in the original phase spa-

ce. Thus the neighbors of a given point are mapped onto neighbors in the delay space.

But let us consider now we embed in an m−dimensional space with m < m0. With this

projection the topological structure is no longer preserved. Points are projected into

neighborhoods of other points to which wouldn’t belong in higher dimensions. These

points are called false neighbors. If we now apply the dynamics, these false neighbors

are not typically mapped into the image of the neighborhood, but somewhere else, thus

the average “diameter” becomes rather large.

The idea of the false nearest algorithm is the following. For each point xi in the

time series look for its nearest neighbor xj in a m−dimensional space. Calculate the

distance ‖ −→xi −−→xj ‖. Iterate both points and compute:

Ri =
| xi+1 − xj+1 |

‖ −→xi −−→xj ‖
(3)

If Ri exceeds a given heuristic threshold Rt, this point is marked as a false nearest

neighbor. The criterion that the embedding dimension is sufficiently high is that the

fraction of points for which Ri > Rt is zero, or at least sufficiently small. Two examples

of well-known dynamical systems (described in Sec. 5.2) are shown in Fig. 1: Lorenz

system, Hénon system, and Hénon time series corrupted by 10 % of Gaussian white

noise. A conclusion is that, as expected, m = 2 is sufficient for the Hénon model, since

this system is determined by two coordinates, whereas the signature is less clear in

the noisy case. Also, the Lorenz system is described by three differential equations,

thus m = 3 is the minimal dimension. In other cases, the minimal sufficient embedding
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Figura 1: The fraction of false nearest neighbors as a function of the embedding di-

mension for noise free Lorenz and Hénon time series, as well as a Hénon time series

corrupted by 10 % of noise.

dimension could become substantially greater.

The main contributions of this work consist of the development of two different

parallel implementations for hybrid memory architectures of the FNN method which

appears in the TISEAN package [1]. This work is specially important due to the fact

that the FNN method represents the starting point for the estimation of minimal

sufficient embedding dimension and Lyapunov exponent. Thus, a good implementation

of FNN method represents the successful of whole the future implementations.

Some references of software [5, 6, 1] for computing the FNN method are found in

the literature. For this work the parallelization of the FNN implementation developed

by TISEAN has been studied.

This paper is organized as follows. First of all, Section 2 summarizes methods

for the neighbors search with particular emphasis in the box-assisted method. The

sequential implementation of the FNN method given by TISEAN project is described

in Section 3. In Section 4, the parallel approaches are introduced. The cases of study

and the experimental results are presented in Section 5. Finally, the conclusions and

future work are outlined in Section 6.
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2. Methodology

Finding neighbors in k−dimensional space is a task encountered in many data

processing problems. In the context of time-series analysis e.g. it occurs if one is in-

terested in local properties for a reconstructed phase space. Examples are predictions,

noise reduction or Lyapunov exponent estimates based on local fits to the dynamics,

or the calculation of dimensional estimates.

As long as only small sets are evaluated, neighbors can be found in a straightfo-

rward way by computing the n2

2
distances between all pairs of points. However, numeri-

cal simulations and to an increasing degree experiments are able to provide much larger

amounts of data. With increasing data sets efficient handling becomes an important

question.

Neighbor searching and related problems of computational geometry have been

extensively studied in computing science, with many publications covering both theo-

retical and practical issues [7, 8, 9, 10, 11].

Multidimensional tree structures [12, 13, 14, 15, 16] are widely used and ha-

ve attractive theoretical properties. Finding all neighbors in a set of n vectors takes

O(log n) operations, thus the total operation count is O(n log n). A fast alternati-

ve that is particularly efficient for relatively low dimensional structures embedded in

multidimensional spaces is given by box-assisted neighbor search methods [17, 18, 19]

which can push the operation count down to O(n) under certain assumptions. Both

approaches are reviewed in [20] with particular emphasis on time series applications.

In the TISEAN project, fast neighbor search is done using a box-assisted approach, as

described in [21].

No matter what space dimension we are working in, it is possible to define can-

didates for nearest neighbors in two dimensions using a grid of evenly spaced boxes.
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With a grid of spacing ǫ, all neighbors of a vector x closer than ǫ must be located in the

adjacent boxes. But not all points in the adjacent boxes are neighbors, they may be up

to away in two dimensions and arbitrarily far in higher dimensions. Neighbors search

is thus a two stage process. First the box-assisted data base has to be filled and then

for each point a list of neighbors can be requested. There are a few instances where it

would be advisable to abandon this neighbor search strategy.

2.1. Box-assisted algorithm

The box-assisted algorithm given here has been heuristically developed in the

context of time series analysis [22, 23]. Next, a very simple version of a box-assisted

algorithm for finding all points closer than a given distance ǫ is described.

Consider a set of n vectors xi in k dimensions, for simplicity rescaled to fall into

the unit cube. For each xi, it can determine all neighbors closer than ǫ, or, strictly

speaking, determine the set of indices:

ui(c) = {j :‖ xj − xi ‖< ǫ} (4)

The idea of box-assisted methods is the following. Divide the phase space into

a grid of boxes of side length ǫ. Then each point falls into one of these boxes. All its

neighbors closer than ǫ have to lie in either the same box or one of the adjacent boxes.

Thus in two dimensions only 9 boxes have to be searched for possible neighbors, i.e.

for ǫ < 1
3

we have to compute less distances than in the simple approach.

The technical problem is how to put the points into the boxes without wasting

memory. In [22], the main idea of the algorithm presented is to associate to each box a

linked list, and write all these linked lists into one large array named LIST. In addition

to this large array, which needs exactly n elements of n data points, an array (called
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Figura 2: In a mesh of 6x6 boxes, the first data point xi = (x1, x2) has fallen into

box(2, 4), points x2 and x4 have fallen into box(4, 4), x3 into box(4, 6), and x5 into

box(6, 6). The figure shows the contents of the arrays LIST(k), X(k), and BOX(i,j)

after reading in the first five points (all empty elements are zero).

BOX) of the size of the mesh is defined, which provides the information where the

individual lists start in LIST. More precisely, each element of BOX contains a pointer

to the head of the list for the box. It is empty if no such list exists yet. Schematically,

this is illustrated in Fig. 2.

Initially, all elements of BOX and LIST are set to zero. Then the data points are

read in, one after the other. Let us assume that the k-th data point falls into BOX(n,m).

If BOX(n,m) is still zero at this time, then we set BOX(n,m) = k, and read in the next

data point. If however BOX(n,m) is equal to l1 6= 0, then we go to the l1th element of

LIST. If this zero, then we set LIST(l1) = k. Otherwise, if LIST(l1) is l2 6= 0, we go

to LIST(l2). We continue with the list until we reach the first empty place, set this

equal to k, and read in the next data point.

In order to find all near neighbors of the kth data point, we go through the nine

neighboring boxes of BOX(n,m) (including this box itself). Whenever the corresponding

element of BOX is l1 6= 0, we first of all know that the l1th data point is a candidate for

a near neighbor. In addition, if LIST(l1) is l2 6= 0, then x(l2) is also a candidate, and

so on. Thus, by walking through the linked lists of the neighboring boxes, we collect

all candidates for near neighbors.
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We have to take great care in speaking about “candidates” for near neighbors.

One reason is that not all points in neighboring boxes have distance < ǫ, if the box

index (n, n
′

) of a point (xk, xk+1) is computed by a simple coarse graining. Another

reason is that, in order to reduce the size of the array BOX, we do not use exactly this

coarse graining. Instead of this, we give to the mesh the topology of a torus, and “wrap”

phase space several times around this torus. This “wrapping” is needed whenever the

range of values in the time sequence is not known a priori. In other circumstances it

reduces memory space substantially for small values of the cut-off distance ǫ, although

it must have a serious impact on the performances.

3. Sequential implementation of the FNN method

The sequential implementation of the FNN method developed by TISEAN project

will be described in this section. The implementation presented here is based on a box-

assisted algorithm.

In Fig. 3, the TISEAN implementation of the FNN method is represented. This

program looks for the nearest neighbors of all data points in m dimensions and iterates

these neighbors one step into the future. If the ratio of the distance of the iteration and

that of the nearest neighbor exceeds a given threshold, the point is marked as a wrong

neighbor. The output is the fraction of false neighbors for the specified embedding

dimensions [4]. In addition, TISEAN project has implemented a new second criterion:

If the distance to the nearest neighbor becomes smaller than the standard deviation of

the data divided by the threshold, the point is omitted [1].

More in detail, this program evaluates the specified embedding dimensions, and

also takes as inputs the time series, the time delay τ and the threshold. One or more

iterations are performed in every estimated dimension. A new and greater ǫ distance
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Figura 3: Flowchart of the FNN implemented in TISEAN package
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is computed for every one of the iterations. An iteration is formed by two main tasks:

the phase space reconstruction and the nearest neighbors search. In the first task, the

BOX and LIST arrays are filled, i.e. a grid of boxes of side length ǫ is made. Time delay

τ is needed for computing this task. This task is implemented by the make_box()

function. In the second one, the box and adjacent boxes of each point are searched for

finding their nearest neighbor. These neighbors must be closer than the given distance ǫ.

Moreover, it is checked whether these points are false neighbors. This task is supported

by the find_nearest() function.

Two conditions are necessary in order to break this loop. The first one concerns

the value of the distance ǫ: If ǫ is greater than a given threshold, the dimension is

completed. The second one concerns the nearest neighbors found: If all points have

found their nearest neighbor, the dimension is completed. In fact, every time a point

has found their nearest neighbor, it doesn’t make sense to compute it in next iterations

again, i.e. using a greater distance ǫ, while the dimension is not over. In this way, the

NEAREST array determines whether each point has found their nearest neighbor.

If after an iteration is finished, the total number of nearest neighbors found is 0

up to this ǫ, the next embedding dimensions iterations will begin using a distance ǫ

greater than this one.

Finally, the embedding dimension value, the fraction of false nearest neighbors,

the average size of the neighborhood, and the average of the squared size of the neigh-

borhood are shown for each specified embedding dimension.
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4. An hybrid memory implementations of the FNN

method

In this Section, the two hybrid memory implementations of the FNN method ba-

sed on the sequential implementation previously introduced are described. For commu-

nication and synchronization purposes, a combination of the Message Passing Interface

(MPI) and POSIX threads parallel programming standards [24, 25, 26] have been used.

As far as the authors know these hybrids implementations presented in this paper

represent the first parallel implementation in this scientific issue. Moreover, by consi-

dering an hybrid implementation it is possible to take advantage of different parallel

architectures due to the fact that, knowing the number of nodes and the number of

cores by node, the software is autotunned in order to exploit the maximum degree of

parallelism existing on the target machine.

MPI basically provides interfaces to send/receive data and synchronize operations

between the multiple tasks of a parallel application, while Pthreads provides a library

specifically to exploit shared memory parallelism on each node.

An MPI process per node must be executed and as many Pthreads as available

CPUs per node must be dispatched. Node threads resolves parts of problem using a

shared memory system, while processes manage threads and resolves the problem using

a distributed memory system.

The main effort in the parallelization of the problem concerns the nearest neigh-

bors search. Although, the parallelization of the phase space reconstruction is treated.

Nevertheless, time consumption in this task is only really important for problems with

many iterations, and for very large mesh sizes.

The two implementations describe the same flow structure than the sequential
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implementation. These proposals are formed by these four basic tasks:

Domain Decomposition: Points are distributed to the threads dispatched by

the processes. Two ways of distribution have been developed: TS (Time Series)

and M (Mesh). This task is supported by the localdim() function.

Phase Space Reconstruction: BOX and LIST arrays are filled, i.e. a grid of

boxes of side length ǫ is made. Only a way of phase space reconstruction has been

developed: P (Parallel). This task is implemented by the make_box() function.

Nearest Neighbors Search: In this task, each thread/process solves their sub-

problem given the domain decomposition way. This task is implemented by the

evaluate() and find_nearest() functions.

Communication of results: This task is divided in two subtasks: per iteration

and per dimension.

With reference to what has been previously explained, in the two parallel imple-

mentations the following nomenclature can be established:

HM-P-TS meaning a Hybrid Memory implementation considering that the

phase space reconstruction has been carried in Parallel and the Time Series has

been distributed.

HM-P-M meaning a Hybrid Memory implementation considering that the pha-

se space reconstruction has been carried in Parallel and instead of distributing

the Time Series, the Mesh has been distributed.

4.1. Implementation issues

Following are given some considerations for parallel implementations.
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4.1.1. Decomposition Domain

In a TS data distribution, each thread obtains a set of data points from the time

series, independently of their location on the grid of boxes. Time series array is divided

into p (number of available threads) uniform parts, excluding first (dim − 1) ∗ τ data

points for each considered dimension dim.

In a M data distribution, each thread obtains the group of boxes (points on

them) located over a set of assigned mesh rows. Since a process only works with a set

of delimited rows (by their first and last thread), this only needs to allocate a part of

the mesh on their local memory. Moreover, they must have their adjacent rows in order

to evaluate appropriately the boxes located in border rows. Consequently, row indices

must be mapped (global-to-local). This characteristic enable the mesh size be flexible

(i.e. the size can be greater when more available resources).

Both data distributions do not take into account the data points which must not

be evaluated in successive iterations, i.e. points that have found their nearest neighbors

in previous iterations.

4.1.2. Phase Space Reconstruction

In a P approach, these arrays are filled in parallel among all threads dispatched by

each process (HM-P-TS) or among all threads dispatched by the whole of the processes

(HM-P-M). Therefore, each thread fills a part of the grid of boxes. They fill the group

of boxes in particular located over a set of assigned mesh rows.
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4.1.3. Nearest Neighbors Search

The evaluate() function iterates over assigned data points and calls the find_nearest()

function for every one of them. Consequently, each thread must hold their partial re-

sults.

In case of M data distribution, each thread can use a different group of points in

every new iteration, while in TS data distribution, each thread uses the same group of

points for all iterations of a same dimension. Consequently, each process must always

have the NEAREST array updated for M approach, and only needs to have the corres-

ponding part of NEAREST array updated for TS approach. Nevertheless, threads work

independently over a part of the NEAREST array.

4.1.4. Communication of results

Initially mutexes are set in order to avoid incoherencies of global variables when

these are updated. Mutual exclusion locks (mutexes) are a common method of seriali-

zing thread execution. Mutual exclusion locks synchronize threads, usually by ensuring

that only one thread at a time executes a critical section of the code.

A barrier is implemented in order to synchronize the threads. A barrier makes all

threads wait until all the threads reach the barrier. This is supported by one condition

variable and one thread counter.

After an iteration is finished, the local variables (thread and process level varia-

bles) are collected and updated, which are necessary in order to decide whether another

iteration must be performed. This task is implemented by the collect_all() function.

This function uses a barrier and a mutex combined with the MPI_Allreduce() function

for this purpose. In this way, each process updates the local variables required. Please
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note that, in HM-P-M proposal, the local NEAREST arrays must be communicated and

updated.

After a dimension is finished, the local results (thread and process level results)

are collected per thread and process in order to show the corresponding global results to

the embedding dimension. This task is implemented by the collect() function. This

function uses another barrier and mutex combined with the MPI_Reduce() function

for their purpose. In this way, only one process (#0) updates the global results.

Pseudocode 1 describes the parallel algorithm shown in this section.

5. Experimental Results

The experimental results presented here have been carried out in Barcelona Su-

percomputing Center-Centro Nacional de Supercomputación (Spain) under the “Per-

formance analysis of parallel algorithms for nonlinear time series analysis” project.

5.1. Platform: Description of MareNostrum and related issues

BSC-CNS hosts MareNostrum, the most powerful supercomputer in Europe and

the number 5 in the world, according to the Top500 list (November 2006). MareNos-

trum is a supercomputer based on processors PowerPC, the architecture BladeCenter,

a Linux system and a Myrinet interconnection. These four technologies configure the

base of an architecture and design that will have a big impact in the future of super-

computing.

Please see below a summary of the system:

Peak Performance of 94,21 Teraflops
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Algorithm 1 Computes minimal emdedding dimension by means of parallel FNN

method
Program FNN : (mindim,maxdim, τ, timeseries)

Inputs: mindim and maxdim are minimal and maximal dimension of the delay

vectors respectively; τ is delay of the vectors; and timeseries(n) is a vector of n

data points

Outputs: the embedding dimension; the fraction of false nearest neighbors; the

average size of the neighborhood; the average of the squared size of the neighbor-

hood

1: Distributing n data to p process /*TS and M types*/

2: for mindim to maxdim do

3: while n data haven’t a nearest neighbor AND ǫ > threshold do

4: Making a grid of boxes of side length ǫ given a τ

5: for subset of data points assigned (depending of TS or M type) do

6: Finding the nearest neighbors closer than ǫ and determining if they are

false neighbors

7: end for

8: Communication of results in order to decide whether another iteration must

be performed

9: Update ǫ

10: end while

11: Communication of results for this dimension

12: Showing results per dimension

13: end for
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10240 IBM Power PC 970MP processors at 2.3 GHz (2560 JS21 blades)

20 TB of main memory

280 + 90 TB of disk storage

Interconnection networks: Myrinet and Gigabit Ethernet

Linux: SuSe Distribution

The nodes (Server Blade JS21) have two dual-core processors PowerPC 970MP

at 2.3 GHz and 8GB of shared memory (really, not all memory is available).

5.2. Case studies

The proposed algorithm is applied to three benchmark problems of chaotic time

series, known as the Lorenz, Hénon and Rössler time series, respectively. The ben-

chmark problems are mainly concerned with chaotic dynamics which is difficult to

predict.

These benchmark problems allow us analyze the behavior of the parallel imple-

mentations developed in this work.

Lorenz: The Lorenz system shows how the state of a dynamical system (the

three variables of a three-dimensional system) evolves over time in a complex,

non-repeating pattern, often described as beautiful. The equations that describe

the system were introduced by E. Lorenz in 1963, which derived it from the

simplified equations of convection rolls arising in the equations of the atmosphere.

These equations are the following

dx

dt
= α(y − x),
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dy

dt
= x(β − z) − y, (5)

dz

dt
= xy − γz,

where α, β and γ are the parameters of Lorenz system. α is called the Prandtl

number and β is called the Rayleigh number.

Hénon: The Hénon map is a discrete-time dynamical system. It is one of the most

widely studied examples of dynamical systems that exhibit chaotic behavior. The

Hénon map takes a point (x,y) in the plane and maps it to a new point. It is

shown by

xn+1 = yn + 1 − αx2
n, (6)

yn+1 = βxn,

where α and β are the parameters of Hénon map.

Rössler: This case study consists of a system of three non-linear ordinary diffe-

rential equations. These differential equations define a continuous-time dynamical

system that exhibits chaotic dynamics.

dx

dt
= −y − z,

dy

dt
= x + αy, (7)

dz

dt
= β + z(x − γ),

where α, β and γ are the parameters of Rössler system.
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5.3. Experimental results

The performance obtained in the parallel implementations are evaluated in terms

of:

Execution time: Time spent in order to solve the problem.

Speed-up: The ratio of the time taken to solve a problem on a processor to the

time required to solve the same problem on a parallel computer with p identical

processors.

Efficiency: A measure of the fraction of time for which a processor is usefully

employed; it is defined as the ratio of the speed-up to the number of processors.

The used time series are formed by 10 millions of data points. The results pre-

sented here have been performed for the first embedding dimension. Note that this

embedding dimension is not the minimal sufficient dimension in these cases. Nevert-

heless, this is usually more time-consuming than the upper dimensions in these three

dynamical systems. Moreover, 4 threads per process/node are dispatched.

Fig. 4 shows the results obtained for the Lorenz case study in terms of execution

time, speed-up and efficiency.

In Fig. 5 are shown the results obtained for the Hénon case study in terms of

execution time, speed-up and efficiency.

Finally, Fig. 6 shows the results for Rössler case study in terms of execution time,

speed-up and efficiency.

Both parallel implementations provides a similar results for theses three systems.

The results indicate that the two parallel approaches, when the method is run using 64
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Figura 6: Rössler case study. (a) Execution time. (b) Speed-up. (c) Efficiency
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processors, is between 75 and 95 times faster than the sequential one. In the context

of time saving with 64 processors compared to the best sequential implementation

implemented in TISEAN, the time saving on the MareNostrum supercomputer are

around 115 % to 145 %.

As figures show, the performance is better when more CPUs are used. In fact,

due to a efficient use of system architecture, all proposals provide superspeed-up in

some cases. However, this is limited in HM-P-TS.

In addition, the mesh sizes used are the best performance give for those cases.

In the next section, the main conclusions of this work are outlined.

6. Conclusions and future work

This paper presents two parallel implementations of the FNN method for hy-

brid memory architectures (HM-P-TS and HM-P-M). To the authors knowledge, these

parallel implementations are the first to be carried out in this area.

The experimental results previously presented show that the main goal of this

work has been accomplished in full. That is, the execution time for applying the FNN

method in order to search the minimal sufficient embedding dimension has been dra-

matically reduced by the use of parallelism.

According to the results presented in the previous section, both parallel imple-

mentations provides a similar results for these three systems.

In general, the type M approach provides a worse data distribution than type TS.

This is influenced by the mesh size used.

The type P approach allows the performance to be improved, mainly when more
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and more iterations are performed, greater mesh sizes are used, and more threads are

launched by MPI-process (i.e. more CPUs per node are available). Please note that the

same data distribution must be assumed.

In some cases, due to a efficient use of system architecture, all proposals provide

superspeed-up thanks to an adaptable mesh size (see Sec. ??)., although this is limited

in HM-P-TS.

Regarding related works, parallel implementations for distributed and shared

platforms have been developed. Also, a parallelization focusing on embedding dimen-

sions have been studied.

Certainly, more experiments need to be conducted in order to extensively asses

the performance of our parallel implementations, since only three of the most relevant

theoretical cases have been considered. These implementations will be tested for diffe-

rent case studies such as ECG, Internet traffic, weather data or ozone measurements.
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