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Abstract

We present a formal method to derive a set of web ser-
vices from a given choreography, in such a way that the sys-
tem consisting of these services necessarily conforms to the
choreography. A formal model to represent orchestrations
and choreographies is given, and we define several confor-
mance semantic relations allowing to detect whether a set of
orchestration models representing some web services leadsto
the overall communications described in a choreography.

1 Introduction

Web services related technologies are a set of middle-
ware technologies for supportingService-Oriented Comput-
ing [13]. The definition of a web service-oriented system in-
volves two complementary views:Orchestrationandchore-
ography. The orchestration concerns theinternal behavior
of a web service in terms of invocations to other services. It
is supported, e.g., by WS-BPEL [1] (Business Processes for
Web Services), which is a language for describing the web
service behavior (workflow) in terms of the composition of
other web services. On the other hand, the choreography
concerns theobservableinteraction among web services. It
can be defined, e.g., by using WS-CDL [18] (Choreography
Description Language for Web Services). Roughly speaking,
the relation between orchestration and choreography can be
stated as follows: The collaborative behavior, described by
the choreography, should be the result of the interaction of
the individual behaviors of each involved party, which are
defined via the orchestration.

In this paper we present some formal frameworks to auto-
matically derive web services (in particular, their orchestra-
tion definition) from a given choreography, in such a way that
the concurrent behavior of these derived services necessarily
conformsto the choreography. The first derivation method is
based on adding anorchestratorservice, which is a kind of
director that is responsible of coordinating services and con-
trolling the system workflow. An alternative method deriving
a decentralized system, with no orchestrator, is presentedtoo.
In order to fix the meaning ofconformancein this context, we
define several semantic relations such that, given the orches-

tration of some web services and a choreography defining
how these web services should interact, they decide whether
the interaction of these web services necessarily leads to the
required observable behavior. Models of orchestrations and
choreographies are constructed by means of two different for-
mal languages. Languages explicitly consider characteristics
such as service identifiers, specific senders/addressees, mes-
sage buffers for representingasynchronouscommunications,
or message types.

This paper makes the following contributions. First, the
proposed method to derive a conforming set of service mod-
els from a given choreography model can be used to de-
fine models and early prototypes of web services systems,
as well as to formally/empirically analyze the properties of
these models/prototypes. Moreover, if service orchestrations
do not have to be automatically derived but aregiven, then
the proposed conformance relations between orchestrations
and choreographies also allow developers to select the ade-
quate service that accomplishes the behavior of certain role,
thus aiding web service discovery tasks. Models defined in
the proposed modeling languages can be used to analyze the
properties of systems of services, such as stuck-freeness and
other problems derived from concurrent execution. For in-
stance, by analyzing the order of exchanged messages we can
study whether the information is ready when required, which
concerns correlation and compensation issues.

2 Related Work

There are few related works that deal with the asyn-
chronous communication in contracts for web service con-
text. In fact, we are only aware of three works from van der
Alst et al. [17], Kohei Honda et al. [12] and, Bravetti and
Zavattaro [4]. In particular, van der Alst et al. [17] present
an approach for formalizing compliance and refinement no-
tions, which are applied to service systems specified using
open Workflow Nets (a type of Petri Nets) where the com-
munication is asynchronous. The authors show how the con-
tract refinement can be done independently, and they check
whether contracts do not contain cycles. Kohei Honda et al.
[12] present a generalization of binary session types to mul-
tiparty sessions forπ-calculus. They provide a new notion
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of types which can directly abstract the intended conversa-
tion structure amongn-parties asglobal scenarios, retaining
an intuitive type syntax. They also provide a consistency cri-
teria for a conversation structure with respect to the protocol
specification (contract), and a type discipline for individual
processes by using aprojection. Bravetti and Zavattaro [4] al-
low to compare systems of orchestrations and choreographies
by means of thetestingrelation given by [2, 9]. Systems are
represented by using a process algebraic notation, and oper-
ational semantics for this language are defined in terms of
labeled transitions systems. On the contrary, our framework
uses an extension offinite state machinesto define orchestra-
tions and choreographies, and a semantic relation based on
the conformancerelation [15, 16] is used to compare both
models. In addition, let us note that [4] considers the suit-
ability of a service for a given choreographyregardlessof the
actual definition of the rest of services it will interact with,
i.e. the service must be valid for the considered roleby its
own. This eases the task of finding a suitable service fitting
into a choreography role: Since the rest of services do not
have to be considered, we can search for suitable services for
each rolein parallel. However, let us note that sometimes
this is not realistic. In some situations, the suitability of a
service actually depends on the activities provided by the rest
of services. For instance, let us consider that atravel agency
service requires that either theair companyservice or theho-
tel service (or both) provide a transfer to take the client from
the airport to the hotel. A hotel providing a transfer isgood
regardless of whether the air company provides a transfer as
well or not. However, a hotel not providing a transfer is valid
for the travel agencyonly if the air company does provide the
transfer. This kind of subtle requirements and conditionalde-
pendencies is explicitly considered in our framework. Thus,
contrarily to [4], our framework considers that the suitability
of a service depends on what the rest of services actually do.
Furthermore, this paper presents a method to automatically
deriveservices from a choreography in such a way that the
system consisting of these services necessarilyconformsto
the choreography. This contrasts with the projection notion
given in [4], which does not guarantee that derived services
do so.

Other works concern the projection and conformance val-
idation between choreography and orchestration withsyn-
chronouscommunication. Bravetti and Zavattaro [3] propose
a theory of contracts for conformance checking. They de-
fine an effective procedure that can be used to verify whether
a service with a given contract can correctly play a specific
role within a choreography. In [14], Zongyan et al. define
the concept of restricted natural choreography that is easily
implementable, and they propose two structural conditions
as a criterion to distinguish the restricted natural choreogra-
phy. Furthermore, they propose a new concept, thedomi-
nant roleof a choice for projection concerns. Carbone et al.
[7] study the description of communication behaviors from a
global point of view of the communication and end-point be-
havior levels. Three definitions for proper-structured global
description and a theory for projection are developed. Bultan

and Fu [6, 5] specify Web Services as conversations by Fi-
nite State Machines that analyze whether UML collaboration
diagrams are realizable or not.

3 Formal model

In this section we present our languages to define mod-
els of orchestrations and choreographies. This section con-
stitutes a extended, revised, and motivated version of [10],
where a brief introduction to these languages is given. Some
preliminary notation is presented next.

Definition 3.1 Given a typeA anda1, . . . , an ∈ A with n ≥
0, we denote by[a1, . . . , an] the list of elementsa1, . . . , an
of A. We denote the empty list by[ ].

Given two listsσ = [a1, . . . , an] andσ′ = [b1, . . . , bm]
of elements of typeA and somea ∈ A, we considerσ · a =
[a1, . . . , an, a] andσ · σ′ = [a1, . . . , an, b1, . . . , bm].

Given a set of listsL, a path-closureof L is any subset
V ⊆ L such that for allσ ∈ V we have that (a) eitherσ = [ ]
or σ = σ′ · a for someσ′ with σ′ ∈ V ; and (b) there do not
existσ′, σ′′ ∈ V such thatσ · a = σ′ andσ · b = σ′′ with
a 6= b.

We say that a path-closureV of L is completein L if it
is maximalin L, that is, if there does not exist a path-closure
V ′ ⊆ L such thatV ⊂ V ′. The set of all complete path-
closures ofL is denoted byComp(L). ut

We present our model of web serviceorchestration. The
internal behavior of a web service in terms of its interaction
with other web services is represented by afinite state ma-
chinewhere, at each states, the machine can receive an input
i and produce an outputo as response before moving to a new
states′. Moreover, each transition explicitly defines which
service must sendi: A sender identifiersnd is attached to
the transition denoting that, ifi is sent by servicesnd, then
the transition can be triggered. We assume that all web ser-
vices are identified by a given identifier belonging to a set
ID. Moreover, transitions also denote theaddresseeof the
outputo, which is denoted by an identifieradr. Let us note
that web services receive messages asynchronously. This is
represented in the model by considering aninput bufferwhere
all inputs received and not processed yet are cumulated. Each
input has attached the identifier of the sender of the input.
A partition of the set of possible inputs will be explicitly
provided, and each set of the partition will denote atype of
inputs. If a service transition requires receiving an inputi
whose type ist, then we will check if the first message of
type t appearing in the input buffer isi indeed. If it is so
(the predicateavailable given in the next definition will
be used to check this), then we will be able to consume the
input from the input buffer and take the transition.1

Definition 3.2 Given a set of service identifiersID, aservice
for ID is a tuple(id, S, I, O, sin, T, ψ) whereid ∈ ID is the

1Note that, equivalently, we could speak aboutdifferentinput buffers, one
for each type, rather than a single input buffer.
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identifier of the service,S is the set of states,I is the set of
inputs,O is the set of outputs,sin ∈ S is the initial state,
T is the set of transitions, andψ is a partition ofI, i.e. we
have

⋃

p∈ψ p = I and for allp, p′ ∈ ψ we havep ∩ p′ = ∅.
Each transitiont ∈ T is a tuple(s, i, snd, o, adr, s′) where
s, s′ ∈ S are the initial and final states respectively,i ∈ I
is an input,snd ∈ ID is the required sender ofi, o ∈ O is
an output, andadr ∈ ID is the addressee ofo. A transition

(s, i, snd, o, adr, s′) is also denoted bys
(snd,i)/(adr,o)

−−−−−−−−−−−−→ s′.
Given a serviceM = (id, S, I, O, sin, T ), aninput buffer

for M is a list [(id1, i1), . . . , (idk, ik)] whereid1, . . . , idk ∈
ID andi1, . . . , ik ∈ I. A configurationof M is a pairc =
(s, b) wheres ∈ S is a state ofM andb is an input buffer for
M . The set of all input buffers is denoted byB. The initial
configurationofM is (sin, [ ]).

Let us suppose that, given a setS, 2S denotes the
powerset ofS. Let b = [(id1, i1), . . . , (idk, ik)] ∈ B
with k ≥ 0 be an input buffer,id ∈ ID, i ∈ I, and
S ∈ 2I . We haveavailable(b, id, i, S) iff, for some
1 ≤ j ≤ k, we have(idj , ij) = (id, i) and there do
not exist l < j, id′ ∈ ID, and i′ ∈ S, such that
(idl, il) = (id′, i′). We haveinsert(b, id, i) = b · (id, i).
In addition, we also have remove(b, id, i) =
[(id1, i1), . . . , (idj−1, ij−1), (idj+1, ij+1), . . . , (idk, ik)],
provided thatj ∈ IN is the minimum value such that
j ∈ [1..k], id = idj, andi = ij. ut

Next we compose services into systems of services.

Definition 3.3 Let ID = {id1, . . . , idp}. For all 1 ≤ j ≤ p,
letMj = (idj , Sj , Ij , Oj , sj,in, Tj, ψj) be a service forID.
Then,S = (M1, . . . ,Mp) is asystem of servicesfor ID.

For all 1 ≤ j ≤ p, let cj be a configuration ofMj.
We say thatc = (c1, . . . , cp) is a configurationof S. Let
c′1, . . . , c

′
p be the initial configurations ofM1, . . . ,Mp, re-

spectively. Then,(c′1, . . . , c
′
p) is theinitial configurationof S.

ut

We formally define how systemsevolve, i.e. how a service
of the system triggers a transition and how this affects other
services in the system. Outputs of services will be consid-
ered as inputs of the services these outputs are sent to. Be-
sides, we consider a special case of input/output that will be
used to denote anull communication. If the input of a transi-
tion isnull then we are denoting that the service can take this
transition without waiting for any previous message from any
other service, that is, we denote aproactiveaction of the ser-
vice. Similarly, anull output denotes that no message is sent
to other service after taking the corresponding transition. In
both cases, the sender and the addressee of the transition are
irrelevant, respectively, so in these cases they will also by de-
noted by anull symbol. A system evolution will be denoted
by a tuple(c, snd, i, proc, o, adr, c′) wherec andc′ are the
initial and the final configuration of the system, respectively,
i is the input processed in the evolution,o is the output sent
as result of the evolution,proc is the service whose transition
is taken in the evolution,snd is the sender ofi, andadr is

the addressee ofo. There are two reasons why an evolution
can be produced: (a) a service proactively initiates a transi-
tion, that is, a transition whose input isnull is taken; and
(b) a service triggers a transition because there is an available
message in its input buffer labelled by the sender identifier
and the input required by the transition. In both cases (a)
and (b), there are two possibilities regarding a new output is
sent or not: (1) if the transition denotes anull output then no
other input buffer is modified; (2) otherwise, i.e. if the transi-
tion denotes an output different fromnull, then this output is
stored in the buffer of the addressee as aninput. By consider-
ing any combination of either (a) or (b) with either (1) or (2),
four kinds of evolutions arise indeed.

Definition 3.4 Let ID = {id1, . . . , idp} be a set of ser-
vice identifiers andS = (M1, . . . ,Mp) be asystem of ser-
vicesfor ID where for all1 ≤ j ≤ p we have thatMj =
(idj , Sj, Ij , Oj , sj,in, Tj , ψj). Let c = (c1, . . . , cp) be a con-
figuration ofS where for all1 ≤ j ≤ pwe havecj = (sj , bj).

An evolutionof S from the configurationc is any tuple
(c, snd, i, proc, o, adr, c′) wherei ∈ I1 ∪ . . .∪ Ip is the input
of the evolution,o ∈ O1 ∪ . . . ∪ Op is the output of the evo-
lution, c′ = ((s′1, b

′
1), . . . , (s

′
p, b

′
p)) is the new configuration

of S, andsnd, proc, adr ∈ ID are the sender, the processer,
and the addressee of the evolution, respectively. All these
elements must be defined according to one of the following
choices:

(a) (evolution activated by some service by itself)For some

1 ≤ j ≤ p, let us supposesj
(null,null)/(adr′,o)

−−−−−−−−−−−−−−−→ s′ ∈
Tj. Then,s′j = s′ andb′j = bj. Besides,snd = null,
proc = idj , adr = adr′;

(b) (evolution activated by processing a message from the
input buffer of some service)For some1 ≤ j ≤ p,

let us suppose thatsj
(snd′,i)/(adr′,o)

−−−−−−−−−−−−−−→ s′ ∈ Tj and we
haveavailable(bj , snd

′, i, p), wherep is the only
set belonging toψj such thati ∈ p. Then,s′j = s′

andb′j = remove(bj, snd
′, i). Besides,snd = snd′,

proc = idj , andadr = adr′;

where, both in (a) and (b), the new configurations of the
rest of services are defined according to one of the follow-
ing choices:

(1) (no message is sent to other service)If adr′ = null or
o = null then for all1 ≤ q ≤ k with q 6= j we have
s′q = sq andb′q = bq.

(2) (a message is sent to other service)Otherwise, letidg =
adr′ for some1 ≤ g ≤ k. Then, we haves′g = sg and
b′g = insert(bg, idj , o). Besides, for all1 ≤ q ≤ k

with q 6= j andq 6= g we haves′q = sq andb′q = bq. ut

Figure 1 (left and center) shows a simple client/server or-
chestration specification where the client (A) sends requests
to the server (B) and the server responds to them, until the
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A Client
b b

b

(−,−)/(B, exit)

(−,−)/
(B, request)

(B, response)
/(−,−)

B Server

b b

(A, request)/
(A, response)

(A, exit)/(−,−)

C Chor
b b

b

exit

A→ B

request

A→ B

response

B → A

Figure 1. A client/server orchestration (left and center) a nd a choreography specification (right).

client notifies that it leaves the system. Initial states arede-
noted by a double circle node, andnull inputs and outputs
are denoted by the dash symbol.

As we will see later, the conformance of a system of ser-
vice orchestrations with respect to a choreography will be as-
sessed in terms of the behaviors of both machines. We extract
the behaviors of systems of services as follows: Given any se-
quence of consecutive evolutions of the system from its initial
configuration, we take the sequence of inputs and outputs la-
belling each evolution and we remove allnull elements from
this sequence. The extracted sequence (calledtrace) repre-
sents theeffectivebehavior of the original sequence. We dis-
tinguish two kinds of traces. Asending traceis a sequence
of outputs ordered as they aresentby their corresponding
senders. Aprocessing traceis a sequence of inputs ordered
as they areprocessedby the services which receive them, that
is, they are ordered as they are taken from the input buffer of
each addressee service to trigger some of its transitions. Both
traces attach some information to explicitly denote the ser-
vices involved in each operation.

Definition 3.5 Let S be a system,c1 be the initial con-
figuration of S, and (c1, snd1, i1, proc1, o1, adr1, c2),
(c2, snd2, i2, proc2, o2, adr2, c3), . . . , (ck, sndk, ik, prock,
ok, adrk, ck+1) bek consecutive evolutions ofS.

Let a1 ≤ . . . ≤ ar denote all indexes of non-null
outputs in the previous sequence, i.e. we havej ∈
{a1, . . . , ar} iff oj 6= null. Then,[(proca1

, oa1
, adra1

), . . . ,
(procar

, oar
, adrar

)] is a sending traceof S. In ad-
dition, if there do not existsnd′, i′, proc′, o′, adr′, c′

such that (ck+1, snd
′, i′, proc′, o′, adr′, c′) is an evolu-

tion of S then we also say that[(proca1
, oa1

, adra1
), . . . ,

(procar
, oar

, adrar
),stop] is a sending trace ofS. The set

of all sending traces ofS is denoted bysndTraces(S).
Let a1 ≤ . . . ≤ ar denote all indexes of non-

null inputs in the previous sequence, i.e. we havej ∈
{a1, . . . , ar} iff ij 6= null. Then,[(snda1

, ia1
, proca1

), . . . ,
(sndar

, iar
, procar

)] is a processing traceof S. In
addition, if there do not existsnd′, i′, proc′, o′, adr′, c′

such that (ck+1, snd
′, i′, proc′, o′, adr′, c′) is an evolu-

tion of S then we also say that[(snda1
, ia1

, proca1
), . . . ,

(sndar
, iar

, procar
),stop] is a processing trace ofS.

The set of all processing traces ofS is denoted by
prcTraces(S). ut

Next we introduce our formalism to represent choreogra-
phies. Contrarily to systems of orchestrations, this formalism

focuses on representing the interaction of services as a whole.
Thus a single machine, instead of the composition of several
machines, is considered. Each choreography transition de-
notes amessage actionwhere some service sends a message
to another one.

Definition 3.6 A choreography machineC is a tupleC =
(S,M, ID, sin, T ) whereS denotes the set of states,M is the
set of messages,ID is the set of service identifiers,sin ∈ S

is the initial state, andT is the set of transitions. A transi-
tion t ∈ T is a tuple(s,m, snd, adr, s′) wheres, s′ ∈ S are
the initial and final states, respectively,m ∈ M is the mes-
sage, andsnd, adr ∈ ID are the sender and the addressee of
the message, respectively. A transition(s,m, snd, adr, s′) is

also denoted bys
m/(snd→adr)

−−−−−−−−−−−−→ s′.
A configurationof C is any states ∈ S. An evolu-

tion of C from the configurations ∈ S is any transition
(s,m, snd, adr, s′) ∈ T from states. The initial configu-
ration of C is sin. ut

Coming back to our previous example, Figure 1 (right)
depicts a choreographyC between servicesA andB, that is,
the client and the server. The transitions of this choreography
actually denote the same evolutions we can find in a system
of services consisting of servicesA andB.

As we did before for systems of services, next we identify
the sequences of messages that can be produced by a chore-
ography machine.

Definition 3.7 Let c1 be the initial configuration of a
choreography machineC. Let (c1,m1, snd1, adr1, c2), . . . ,
(ck,mk, sndk, adrk, ck+1) be k ≥ 0 consecutive evo-
lutions of C. We say thatσ = [(snd1,m1, adr1), . . . ,
(sndk,mk, adrk)] is a trace of C. In addition,
if there do not exist m′, snd′, adr′, c′ such that
(ck+1,m

′, snd′, adr′, c′) is an evolution ofC then we also
say that [(snd1,m1, adr1), . . . , (sndk,mk, adrk),stop]
is a trace ofC. The set of all traces ofC is denoted by
traces(C). ut

4 Conformance relations and derivation of
choreography-compliant sets of services

Now we are provided with all the required formal machin-
ery to define ourconformance relationsbetween systems of
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orchestrations and choreographies. We will consider a se-
mantic relation inspired in theconformance testingrelation
given in [15, 16]. This notion is devoted to check whether an
implementationmeets the requirements imposed by aspecifi-
cation. In our case, we will check whether the behavior of a
system of orchestration services meets the requirement given
by the choreography.

However, there are some important differences between
the notion proposed in [15, 16] and the notion considered
here. Contrarily to those works, the behavior of orchestra-
tions and choreographies will not be compared in terms of
their possible interactions with an external entity (i.e. user,
observer, external application, etc) but in terms of what both
models can/cannot do by their own, because both models
are considered asclosed worlds. Let us also note that non-
determinism allows a choreography to provide multiple valid
ways to perform the operations it defines. Consequently, we
consider that a system of orchestration services conforms to a
choreography if it performsone or moreof these valid ways.
For each of these valid ways, care must be taken not to al-
low the system of services toincompletelyperform it, i.e. to
finish in an intermediate state – provided that the choreogra-
phy does not allow it either. In order to check these require-
ments, only complete path-closures will be considered (see
Definition 3.1). Moreover, the set of complete path-closures
of the system of choreographies is required to be non-empty
because the system is required to provide at leastone(com-
plete) way to perform the requirement given by the choreog-
raphy. Alternatively, we also consider another relation where
the system of orchestrations is required to performall exe-
cution ways defined by the choreography. This alternative
notion will be calledfull conformance.

Let us recall that we consider asynchronous communica-
tions in our framework. Thus, the moment when a message
is sent does not necessarily coincide with the moment when
this message is taken by the receiver from its input buffer
and is processed. In fact, we can define a choreography in
such a way that defined communications refer to either the
former kind of events or the latter (i.e., instants where mes-
sages are sent, or instants where messages are processed by
their receivers, respectively). Thus, we consider two waysin
which a system of services may conform to a choreography:
with respect to sending traces, and with respect to processing
traces. Besides, we explicitly identify the case where both
conformance notions simultaneously hold.

Definition 4.1 Let S be a system of services andC be a
chorography machine.

We say thatS conforms toC with respect to sending
actions, denoted byS confs C, if either we have∅ ⊂
Comp(sndTraces(S)) ⊆ Comp(traces(C)) or we have
∅ = Comp(sndTraces(S)) = Comp(traces(C)).

We say that S fully conforms to C with respect
to sending actions, denoted by S conffs C, if
Comp(sndTraces(S)) = Comp(traces(C)).

We say thatS conforms toC with respect to process-
ing actions, denoted byS confp C, if we have either

∅ ⊂ Comp(prcTraces(S)) ⊆ Comp(traces(C)) or
∅ = Comp(prcTraces(S)) = Comp(traces(C)).

We say that S fully conforms to C with respect
to sending actions, denoted by S conffp C, if
Comp(prcTraces(S)) = Comp(traces(C)).

We say thatS conforms toC, denoted byS conf C, if
S confs C andS confp C.

We say thatS fully conforms toC, denoted byS conff C,
if S conffs C andS conffp C. ut

The subtle differences between all the previous semantic
relations are illustrated in detail, by means of several exam-
ples and a small case study, in Appendix A.

Once we are provided with appropriate notions to com-
pare sets of orchestration models with choreography models,
we study the problem of automatically deriving orchestration
services from a given choreography, in such a way that the
system consisting of these derived services conforms to the
choreography. Next we consider deriving services byproject-
ing the structure of the choreography into each involved ser-
vice. Each service copies the form of states and transitionsof
the choreography, though service transitions are labeled only
by actions concerning the service. Unfortunately, if services
are derived in this way then, in general, the resulting set of
services does not conform to the choreography with respect
to any of the proposed conformance notions. Let us consider
Figure 4, depicted in Appendix A. Services24, 25, and26 are
projections of the choreography27 into each service regarded
in the definition of27. However, the composition of24, 25,
and26 does not necessarily lead to the behavior required by
27. In particular, it could be the case that service25 takes its
right choice (i.e. it sendsc to 26) while24 takes its left choice
(i.e. it sendsb to 25), which is not allowed by27. Moreover,
if only messages appearing in choreography27 are allowed
in services then no alternative definition of24, 25, and26
allows to meet the requirement imposed by27: Service24
cannot decide whether it must sendb or c to 25 because it
cannot know the message sent by25 to 26. The problem
of investigating how we can design asynchronous communi-
cating processes in such a way they will necessarily produce
some behavior or reach some configuration have been tack-
led in several ways in the literature. For instance, [11] studies
the problem of designing two asynchronous processes in such
a way that their progress is guaranteed, while [8] studies the
cases where we cannot define some communicating processes
conforming to a given specification. We will make any chore-
ography realizable byaddingsome control messages to the
definition of services. These messages will allow services to
know what is required at each time to properly make the next
decision, according to the choreography specification. Next
we reconsider our conformance relations under the assump-
tion that these additional messages are allowed indeed. That
is, services are allowed to send/receive additional messages
not included in the choreography. In order to avoid confusion
between standard chorography messages and other messages,
the latter messages are required to be different to the former.
Regarding the definition of conformance relations, we require
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traces inclusion/equality again, though we remove additional
messages prior to comparing sets of traces.

Definition 4.2 Let σ∈sndTraces(S)∪ prcTraces(S)
whereS is a system of services. Theconstrainof σ to a
set of inputs and outputsQ, denoted byσQ, is the result of
removing fromσ all elements(a,m, b) with m 6∈ Q.

Let S be a system of services forID and let C =
(S,M, ID, sin, T ) be a choreography. Letconfx ∈
{confs,conf

f
s ,confp,conf

f
p}. We haveS conf′

x C
if S confx C provided that the occurrences of
sndTraces(S) andprcTraces(S) appearing in Defini-
tion 4.1 are replaced by sets{σM |σ ∈ sndTraces(S)}
and {σM |σ ∈ prcTraces(S)}, respectively. Now, let
confx ∈ {conf,conff}. We haveS conf′

x C if
S confx C provided that the occurrences ofconfs,
conffs , confp, conffp appearing in the definition of
conf andconff , given in Definition 4.1, are replaced by
conf′

s,conf
f
s
′,conf′

p,conf
f
p
′, respectively. ut

We revisit our previous example. Let us modify services
24 and25 in such a way that, right after25 sendsb or c to ser-
vice 26, service25 tells service24 whetherb or c was sent.
This is done by sending to service24 a new messaged or e,
respectively. Services24′ and25′ (also depicted in Figure 4)
are the resulting new versions of services24 and25, respec-
tively. Let us note that the system consisting in24′, 25′, and
26 conforms to27 with respect to all conformance relations
introduced in the previous definition, because all of them ig-
nore messagesd ande.

Intuitively, a derivation of services based on a simple pro-
jection does not work because it does not make services fol-
low the non-deterministic choices taken by the choreography.
In order to solve this problem, next we consider an alterna-
tive way to extract services from the choreography. In par-
ticular, new control messages are added to make all services
follow the same non-determinism choices of the choreogra-
phy, as we did in our previous example. In order to do it, we
will introduce a new service, called theorchestrator, which
will be responsible of making all non-deterministic choices
of the choreography. For each statesj of the choreography
having several outgoing transitions, an equivalent transition
will be non-deterministically taken by the orchestrator (say,
thep-th available transition). Next, the orchestrator will take
several consecutive transitions toannounceits choice to all
services. In each of these transitions, the orchestrator will
send a messageajp to another service, meaning that thep-th
transition leaving statesj must be taken by the service. After
(a) the orchestrator announces its choice to all services; and
(b) the orchestrator receives a messagebjp from theaddressee
of the choreography transition (this message denotes that the
addressee has processed the message), the orchestrator will
reach a state representing the state reached in the choreog-
raphy after taking the selected transition, and the same pro-
cess will be followed again. By adding the orchestrator, we
make sure that all services follow the same non-deterministic
choices of the choreography, and thus a system consisting of

the orchestration and the corresponding derived services will
conformto the choreography with respect to allconf′

x re-
lations given in Definition 4.2. Let us note that, since the
only message required by the orchestrator to continue is sent
by the addressee denoted in the choreography transition, at
a given time the orchestrator and the services could have
reached different steps of the choreography simulation exe-
cution (in general, the orchestrator will be in afurther step).
There is no risk that services confuse the order in which each
transition must be taken, because all messages controlling
transition choices are introduced in input buffers (as the rest
of messages) and they will belong to the sametype. Thus,
they will be processed in the same order as the orchestrator
sent each of them. This guarantees that services will be led
through the choreography graph by following the orchestra-
tor plan, in the same order as planned. Next we will assume
that the identifier of the orchestrator isorc.

Definition 4.3 Let C = (S,M, ID, sin, T ) be a choreog-
raphy machine whereID = {id1, . . . , idn} and S =
{s1, . . . , sl}. For all 1 ≤ i ≤ n, thecontrolled servicefor
C andidi, denotedcontrolled(C, idi), is a service

Mi =





idi, S ∪ {sij , s
′
ij |i, j ∈ [1..l]},

M ∪ {aij |i, j ∈ [1..l]},M ∪ {bij |i, j ∈ [1..l]},
sin, Ti, {{m}|m ∈M} ∪ {{aij|i, j ∈ [1..l]}}





where for allsj ∈ S the following transitions are inTi:

• Let t1, . . . , tk be the transitions leavingsj in C. For all

1 ≤ p ≤ k we havesj
(orc,ajp)/(null,null)

−−−−−−−−−−−−−−−−−→ sjp∈Ti.

• Let tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈ T be thep-th transi-
tion leavingsj in C. For all1 ≤ j ≤ l and1 ≤ p ≤ k

we havesjp
(snd′,i)/(adr′,o)

−−−−−−−−−−−−−−→ ujp ∈ Ti, where

(a) if snd = idi thensnd′ = i = null, adr′ = adr,
o = m, andujp = s′j .

(b) else, ifadr = idi thensnd′ = snd, i = m, adr′ =
o = null, andujp = s′jp. Besides, we also have

s′jp
(null,null)/(orc,bjp)

−−−−−−−−−−−−−−−−−→ s′j in Ti.

(c) elsesnd′ = i = adr′ = o = null andujp = s′j .

The orchestratorof C, denoted byorchestrator(C),
is a service

O =





orc, S ∪ {sijk|i, j ∈ [1..l], k ∈ [1..n+1]},
M ∪ {bij|i, j ∈ [1..l]},M ∪ {aij|i, j ∈ [1..l]},
sin, To, {{m}|m ∈M} ∪ {{aij|i, j ∈ [1..l]}}





where for allsj ∈ S the following transitions are included in
To:

• Let t1, . . . , tk be the transitions leavingsj in C. For all

1≤p≤k we havesj
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→ sjp1∈To.
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Figure 2. Derivation of services with orchestra-
tor.

• Let tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈ T be thep-th transi-
tion leavingsj in C. For all 1 ≤ p ≤ k, 1 ≤ i ≤ n we

have sjpi
(null,null)/(idi,ajp)

−−−−−−−−−−−−−−−−−→ sjp i+1∈To. We also

havesjp n+1
(adr,bjp)/(null,null)

−−−−−−−−−−−−−−−−−→ s′j∈To. ut

Theorem 4.4 Let C = (S,M, ID, sin, T ) be a
choreography with ID = {id1, . . . , idn}. Let
S = (controlled(C, id1), . . . , controlled(C, idn),
orchestrator(C)). For all confx ∈ {conf′

s,conf
′
p,

conf′,conffs
′, conffp

′, conff′} we haveS confx C. ut

Figure 2 shows a choreographyC as well as the services
derived fromC by applying Definition 4.3, including an or-
chestratorO.

If we do not need to meet the conformance with respect
to processing traces, that is, if we only requireconf′

s and
conffs

′, then we do not need to require that addressees of
choreography transitionsblock the advance of the orchestra-
tor until they process received messages. This restrictionwas
imposed just to force the message processing follow the order
required by the choreography. Alternatively, if addressees do
not block the orchestrator then, for instance, the service re-
sponsible of processing the second message of the execution
could process it before the service responsible of processing
the first one does so. Even if the orchestrator were not re-
quired to wait for the addressees, the order in which mes-
sages aresentwould be correct as long as the orchestrator is
required to wait for thesenders. Actually, if we only con-
sider conformance with respect to sending traces then replac-
ing the restriction of waiting for the addresses by the restric-
tion of waiting for the senders is a good choice in terms of
efficiency. This is because, in this case, the orchestrator will
not be blocked just waiting for the message to be processed;
on the contrary, it will be able to go on even if the message
has not been processed yet. Thus, by taking this alternative,
the rate of activities the services can actually execute inpar-
allel is increased.

Definition 4.5 We have thatcontrolled’(C, idi) is de-
fined ascontrolled(C, idi) after replacing cases (a) and
(b) of Definition 4.3 by the following expressions:

(a) if snd = idi then snd′ = i = null, adr′ = adr,
o = m, and ujp = s′jp. Besides, we also have

s′jp
(null,null)/(orc,bjp)

−−−−−−−−−−−−−−−−−→ s′j in Ti.

(b) else, ifadr = idi thensnd′ = snd, i = m, adr′ = o =
null, andujp = s′j . ut

Theorem 4.6 Let C = (S,M, ID, sin, T ) be a chore-
ography with ID = {id1, . . . , idn}. Let S =
(controlled’(C, id1), . . . ,controlled’(C, idn),
orchestrator(C)). For allconfx ∈ {conf′s,conf

f
s
′}

we haveS confx C. ut

Let us note that we can remove the orchestrator and dis-
tribute its responsibilities among the services themselves,
thus making a decentralized solution. Lets be a choreog-
raphy state with several outgoing transitions. Instead of us-
ing an orchestrator to choose which transition is taken, we
do as follows: We sort all outgoing transitions e.g. by the
name of the sender and we make the first sender choose be-
tween (a) taking any of the transitions where it is the sender;
or (b) refusing to do so. In case (a) it will announce its choice
to the rest of services, thus playing the role of the orches-
trator in this step. In case (b) it will notify its rejection to
choose a transition to the second service. Then, the second
service will choose either (a) or (b) in the same way, and so
on up to the last sender, which will be forced to take one of its
transitions. Let us note that, in this alternative design, aser-
vice can receive the request to take a given non-deterministic
choice fromseveralservices, and thus all corresponding tran-
sitions must be created. This complicates the definition of the
derivation; due to the lack of space, the formal definition of
this derivation is given in Appendix B (see Definitions 5.1
and 5.1). As it is shown in Theorems 5.2 and 5.2, the set
of services derived in this way also conforms to the chore-
ography with respect to all relations given in Definition 4.2
(if services wait for the addressee of the choreography transi-
tion) or with respect toconf′

s andconffs
′ (if they do not).

An example of derivation of the former kind is depicted
in Figure 3. For the sake of simplicity, some transitions in-
cluded in the formal derivation have been omitted. ServiceA

receives the responsibility of either taking one of the transi-
tions where it is the sender (there is only one in this example)
or refusing to do so. In the former case, it tells the next ser-
vice in the list (B) that it will decide the transition indeed
(messagea2) and next it tells all services (i.e. justB) which
of its transitions it will actually take (a21). Then, it sendse
to B and waits for a signal indicating thatB has processed
the message (b2). In the latter case, i.e. if it refuses to choose
one of its transitions, then it tells its decision to next service
B (messagea1) and waits for the rest of services (justB) to
tell it which choice it must take. WhenB does so (a11), it
waits for receivingb from B and next it acknowledges the

7



(-- ,--)/
(B,a1)

A

(B )/,a11
( )--,--

C

e

A B

(B,f)/

(B,b2)/

B

f

B A

(-- ,--)/
(B,a2)

(B,b1)

(--,--)

(--,--)/
(B,a21)

(--,--)/

(B,e)

( )--,--

(--,--)/
(A,a11)

(--,--)/

(A,b1)/

( )--,--

(A,f)

(--,--)

( )/A,a21
( )--,--

(A,e)/

(A,b2)

( )/A,a1 ( )/A,a2

Figure 3. Derivation of services without or-
chestrator.

reception(b1). The behavior ofB turns out to be dual to the
behavior ofA.

5 Conclusions and future work

In this paper we have presented a formal framework to au-
tomatically extract a system of services that conforms to a
given choreography. Two derivation methods, one of them
based on an orchestrator service and the other one yielding
a decentralized system, are presented. For each method, we
consider two alternatives: Making the system conform with
respect to instants where messages are sent, or making it con-
form with respect to all proposed criteria. Languages for
defining models of orchestrations and choreographies have
been presented, and we have defined some formal semantic
relations where, in particular, sending traces are distinguished
from processing traces, and the suitability of a service fora
given choreography may depend on the activities of the rest
of services it will be connected with, which contrasts with
previous works [4]. The proposed framework is illustrated
with several toy examples and a small case study, given Ap-
pendix A.
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Appendix A: Examples and Case Study

In this appendix we illustrate the use of the confor-
mance relations given in Definition 4.1 with some simple
examples, and next we show a small case study includ-
ing a more elaborated system. Intuitively, a complete path-
closure (see Definition 3.1) is a set consisting of a (max-
imal) sequence as well as all of its prefixes. Let us note
that the longest element of afinite complete path-closure
of traces necessarily finishes with thestop symbol. For
the sake of clarity, from now on a complete path-closure
will be referred just by its longest element not includ-
ing the stop symbol. For instance, the complete path-
closure{[ ], [(1, a, 2)], [(1, a, 2), (1, b, 2)], [(1, a, 2), (1, b, 2),
stop]} will be referred just by[(1, a, 2), (1, b, 2)] (and we
will say that [(1, a, 2), (1, b, 2)] is a complete trace). Fol-
lowing a similar idea, aninfinite complete path-closure
of the form {[ ], [(a1, b1, c1)], [(a1, b1, c1), (a2, b2, c2)],
[(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)], . . .} will be referred by
the infinite list[(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), . . .].

Figure 4 presents several orchestration services and chore-
ographies. For all depicted services we will assume each in-
put belongs to a different type of inputs. LetS1 be a sys-
tem of orchestration services consisting of services1 and
2. We check whetherS1 conforms to choreographies5 and
6. If we consider theconfs relation, then we observe that
S1 conforms to both5 and 6. This is because the only
possible complete sending trace ofS1 is [(1, a, 2), (1, b, 2)],
which is included in the set of complete traces of5
(which is {[(1, a, 2), (1, b, 2)], [(1, b, 2), (1, a, 2)]}) and 6
({[(1, a, 2), (1, b, 2)]}). Concerningfull conformance, we
have thatS1 fully conforms to 6 with respect to sending
traces, but not to5. Regarding processing traces, let us
note thatS1 can generate the complete processing traces
[(1, a, 2), (1, b, 2)] and [(1, b, 2), (1, a, 2)] (note that, aftera
and b are received in the input buffer of service2, service
2 can process them in any order). Both complete process-
ing traces are included in the set of complete traces of5,
but not in the corresponding set of6, which only includes
[(1, a, 2), (1, b, 2)]. Thus, if eitherconfp or conffp are con-
sidered, thenS1 conforms to5, but not to6.

LetS2 be the system consisting of services3 and4, and let
us compare it with choreographies7 and8. In this case, we
have the opposite result as before. In particular, if process-
ing traces are considered, thenS2 conforms to both chore-
ographies (iffull conformance is considered, it only con-
forms to8). However,S2 does not conform to8 when send-
ing traces are considered, regardless of whether full confor-
mance is considered or not. Let us note thatS2 can perform
the sending traces[(3, a, 4), (3, b, 4)] and[(3, b, 4), (3, a, 4)].
However, the sets of complete traces of choreographies
7 and 8 are {[(3, a, 4), (3, b, 4)], [(3, b, 4), (3, a, 4)]} and
{[(3, a, 4), (3, b, 4)]}, respectively. Thus, ifconfs orconffs
are considered, thenS2 conforms to choreography7, but not
to choreography8.

Next, let S3 be the system consisting of services9
and 10. We compareS3 with choreographies11 and

12. The set of complete sending traces ofS3 is equal to
{[(9, a, 10), (9, b, 10)], [(9, b, 10), (9, a, 10)]}, while the set
of complete processing traces ofS3 is {[(9, a, 10)]}. On
the one hand, the only complete trace of choreography
11 is [(9, a, 10)], so S3 conforms to11 only if process-
ing traces are considered (with respect to bothconfp and
conffp ). On the other hand, choreography12 can produce
both [(9, a, 10), (9, b, 10)] and [(9, b, 10), (9, a, 10)]. Since
only complete traces are considered,S3 conforms to12 only
if sending traces are regarded (according to bothconfs and
conffs ).

Despite of the fact that only asynchronous communica-
tions are considered in our framework, synchronous commu-
nications can be trivially defined indeed. Let us consider the
systemS4 consisting of services13 and14. After 13 sends
messagemsg to 14, service13 will be blocked until14 per-
forms its unique transition and sends messageack back to
13. So, a synchronous communication between13 and14
is actually expressed by this trivial structure. A syntactic
sugar to denote a synchronous communication like this is im-
plicitly proposed in pictures of services15 and 16, which
are intended to be equivalent to13 and14, respectively. In
particular, we propose to denote a synchronous communi-
cation on messagemsg by using new symbolsmsg? and
msg!. Let us note that if only these kind of messages are
used in orchestrations, thenconfs = confp = conf and
conffs = conffp = conff .

Let us recall that the suitability of an orchestration service
to fulfill a given choreography depends on the behavior of
the rest of involved services. In order to illustrate this, we
revisit the travel agency example presented in Section 2. A
travel agency (service17) waits for a messagea (standing for
“we provide you with a transfer service”) from any of two
possible services: an air company or a hotel. We consider
two possible air companies, represented by services15 and
15′. Service15 provides service17 with a transfer service,
while 15′ does nothing. Similarly, services16 and16′ rep-
resent two hotels, where only16 provides the travel agency
with a transfer. Most combinations of, on one hand, either15
or 15′ and, on the other hand, either16 or 16′, allow 17 to
satisfy the choreography18 with respect to (non-full) send-
ing and processing conformance. In fact, only combining15′

with 16′ fails to meet both non-full semantic relations. Thus,
either the air company or the hotel must provide the transfer.
If full conformance is required, then the only valid combina-
tion of air company and hotel consists in taking15 and16,
respectively.

We show that systems of orchestrations are required to
completeall started sequences, that is, they are required
not to finish a started sequence until the choreography ex-
plicitly allows it. Let us consider orchestration services
21, 22, and 22′, as well as choreography23. Let S5 be
a system consisting of services21 and 22. The sequence
[(21, a, 22), (21, b, 22)] is both the only complete sending
trace and the only complete processing trace ofS5. Thus,
S5 conforms to choreography23 with respect to both kinds
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of traces. Let us substitute the definition of service22 by
that given for service22′, and letS′

5 be the resulting sys-
tem. The set of complete sending traces ofS′

5 is the same
asS5, so S′

5 also conforms to23 with respect to sending
traces. However, the set of complete processing traces of
S′

5 is {[(21, a, 22′), (21, b, 22′)], [(21, a, 22′)]} because22′

could take its right path and get stuck after receivinga (more
formally, [(21, a, 22′),stop] is a processing trace ofS′

5).
Since[(21, a, 22′)] is not acompleteprocessing trace of23,
S′

5 does not conform to23 with respect to processing traces.
Finally, we consider a case where there areinfinite com-

plete traces in systems due to the presence of loops. Let us
revisit the orchestrations and the choreography previously de-
picted in Figure 1, and letS be the composition ofA andB.
The infinite set of complete traces of choreographyC is T =
{σ, σ1, σ2, σ3, . . .}, whereσ is the infinite concatenation of
the subsequenceα = [(A, request, B), (B, response,A)],
that is, σ = α · α · α · . . ., and for all i ∈ IN we have
σi = (α)i · (A, exit, B). In fact, the infinite set of complete
sending and processing traces ofS is T as well, so we have
that S conforms toC with respect to all relationsconfs,
confp, conf, conffs , conffp , andconff .

Finally, we present a small case study consisting in a more
elaborated system. This is a typical purchase process that
uses Internet as a business context for a transaction. There
are three actors in this example: a customer, a seller and a
carrier. The purchase works as follows:“A customer wants
to buy a product by using Internet. There are several sell-
ers that offer different products in Internet Servers basedon
Web-pages. The customer contacts a seller in order to buy
the desired product. The seller checks the stock and contacts
with a carrier. Finally, the carrier delivers the product tothe
customer.”

Figures 5 and 6 depict the orchestration of the three actors
represented in this purchase process, that is, the customer,
the seller and the carrier. The behavior of each participantis
defined as follows:

• Customer: It contacts the seller to buy a product. After
consulting the product list, it can either order a product
or do nothing. If the customer decides to buy a product,
then it must send the seller the information about the
product and the payment method. After the payment, it
waits to receive the product from a carrier.

• Seller: It receives the customer order and the payment
method. The seller checks if there is enough stock to
deliver the order and sends an acceptance notification to
the customer. If there is stock to deliver the order, then
it contacts with a carrier to deliver the product.

• Carrier: It picks up the order and the customer informa-
tion in order to deliver the product to the customer.

Figure 7 shows the choreography of this Internet purchase
process. Once the orchestrations of the three service and the
choreography specification are defined, we use the confor-
mance relations given in Definition 4.1 to check if the com-

s1 (1,iProduct,2), (2,lProduct,1), (1,Nothing,2)
s2 (1,iProduct,2), (2,lProduct,1), (1,bProduct),

(2,NoStock,1)
s3 (1,iProduct,2), (2,lProduct,1), (1,bProduct),

(2,Stock,1), (1,iPayment,2), (2,Receipt,1),
(2,PickOrder,3), (3,DeliverOrder,1)

Table 1. The choreography C traces.

position of the proposed orchestration services satisfies the
choreography.

Let us consider the systemS = (1, 2, 3), where1, 2, and3
represent the client service, the seller service, and the carrier
service, respectively. LetC be the choreography machine de-
picted in Figure 7, and lets1, s2, s3 be the sequences depicted
in Table 1. For all complete traceσ of C, σ is an infinite
concatenation of subsequencesσ = α1 · α2 · α3 · α4 · . . .
where for all i ∈ IN we haveαi ∈ {s1, s2, s3}. Let us
note that any complete sending or processing traceσ′ of
S must also be an infinite concatenation of subsequences
s1, s2, s3. Hence, for allσ′ ∈ Comp(sndTraces(S)) ∪
Comp(prcTraces(S)) we haveσ′ ∈ Comp(traces(C)),
and thus we have bothSconfsC andSconfpC, which im-
pliesSconfC. Moreover, in this case we also have that, for
all σ ∈ Comp(traces(C)), σ ∈ Comp(sndTraces(S))
andσ ∈ Comp(prcTraces(S)). Therefore, we also have
SconffsC, SconffpC, andSconffC.

Appendix B: Derivation of decentralized sys-
tems of services

In this appendix we formally present the derivation of de-
centralized systems of services from choreographies. Two
alternatives are considered: Making the system conform to
the choreography with respect to all proposedconf′

x con-
formance relations, and making it conform only with respect
to sending traces. Theorems 5.2 and 5.4 show the correctness
of both approaches.

Definition 5.1 Let C = (S,M, ID, sin, T ) be a choreog-
raphy machine whereID = {id1, . . . , idn} and S =
{s1, . . . , sl}. For all s ∈ S and id ∈ ID, let Ts,id =
{(s,m, id, adr, s′)|∃ adr,m, s′ : (s,m, id, adr, s′) ∈ T }
andms,id = |Ts,id|. For all 1 ≤ j ≤ ms,id, let ts,id,j de-
note the j-th transition ofTs,id according to some arbitrary
ordering criterium. Let[idsas

1
, . . . , idsas

hs

] denote the sequence

of all identifiersid ∈ ID such thatms,id ≥ 1, ordered ac-
cording to some arbitrary ordering criterium.

For all 1 ≤ i ≤ n, the decentralized servicefor C
and idi, denoteddecentral(C, idi), is a serviceMi =
(idi, S

′
i, I

′
i, O

′
i, sin, Ti, {I

′
i}), whereS′

i, I
′
i, O

′
i consist of all

states, inputs, and outputs appearing in transitions described
next and, for alls ∈ S, the following transitions are inTi:

[CASE 1] If there are transitions leavings in which idi
is the sender, butidi is neither the first nor the last service
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1 Client

b b b

b b

(−,−)/

(2, iProd)

(2, lProd)/

(2, bProd)

(2, NoStock)/

(−,−)

(2, lProd)/(2, Nothing)

(2, Stock)/(2, iPayment)

(2, Receipt)/

(−,−)

(3, DeliverOrder)/

(−,−)

3 Carrier

b

(2, P ickOrder)/
(1, DeliverOrder)

Figure 5. Client and Carrier orchestration specifications.

2 Seller

b b b

b b b

(1, iProd)/(1, lProd)

(1, Nothing)/(−,−)

(1, bProduct)/(1,NoStock)
(1, bProduct)/

(1, Stock)

(1, iPayment)/(1, Receipt)

(−,−)/
(3, P ickOrder)

Figure 6. Seller orchestration specification.

doing so, that is, ifidi = idsasj
for some1 < j < ashs

, then
we consider the following transitions:

(a) s
(idi−1,idontchoose)/(null,null)

−−−−−−−−−−−−−−−−−−−−−−−−−→ sicanchoose (idi−1

tells idi that it refuses to choose one of its transitions).

(b) s
(idi−1,alreadychosen)/(idi+1,alreadychosen)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
sidontchoose (idi−1 tells idi that somebody has al-
ready chosen, andidi propagates the message).

(c) sicanchoose
(null,null)/(idi+1,idontchoose)

−−−−−−−−−−−−−−−−−−−−−−−−−→
sidontchoose (idi decides not to choose).

(d) sicanchoose
(null,null)/(idi+1,alreadychosen)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
siwillchoose (idi decides to choose).

(e) For all1 ≤ j ≤ Ts,id, we have:

(e.1) Let ts,idi,j = (s,m, snd, adr, s′). We

havesiwillchoose
(null,null)/(adr,takemychoicej )

−−−−−−−−−−−−−−−−−−−−−−−−−→

sichoosej
(idi chooses itsj-th transition and asks

adr to take its choice).

(e.2) sichoosej

(null,null)/(adr,m)
−−−−−−−−−−−−−−−→ sichoose′

j
(idi sends

the messagem denoted by itsj-th transition to
adr).

(e.3) sichoose′
j

(adr,ididit)/(null,null)
−−−−−−−−−−−−−−−−−−→ sichoosej1

(idi
waits for a signal fromadr indicating thatm was
processed).

(e.4) LetG = {g|g ∈ [1..n−1], g 6= i, idg 6= adr}. For
all 1 ≤ j ≤ Ts,id and allk ∈ G we have

∗ sichoosejk

(null,null)/(idk,takemychoicej)
−−−−−−−−−−−−−−−−−−−−−−−−−→

sichoosej k′
, wherek′ is the minimum value

in G such thatk′ > k (idi asks everybody to
take its choice).

(e.5) sichoosejn

(null,null)/(idn,takemychoicej)
−−−−−−−−−−−−−−−−−−−−−−−−−→ s′ (af-

ter askingidn to take its choice,idi reaches the
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C Chor

b b b b

b b b b

iProd

1 → 2

lProd

2 → 1

Nothing

1 → 2

bProd

1 → 2

NoStock

2 → 1

Stock
2 → 1

iPayment

1 → 2

Receipt

2 → 1

PickOrder

2 → 3

DeliverOrder
3 → 1

Figure 7. The choreography specification.

destination ofts,idi,j , that iss′).

(f) For all j ∈ [1..n]\{i} and for all1 ≤ k ≤ Ts,idj
, we

have:

(f.1) Let us assumets,idj ,k = (s,m, snd, adr, s′).
If adr = idi then we have

sidontchoose
(idj ,takemychoicek)/(null,null)

−−−−−−−−−−−−−−−−−−−−−−−−−→

sifollowjk
and sifollowjk

(idj ,m)/(idj ,ididit)
−−−−−−−−−−−−−−−→ s′

(idi takes thek-th choice ofidj , which makesidi
receive a message fromidj and next acknowledge
it).

(f.2) Otherwise, we have

sidontchoose
(idj ,takemychoicek)/(null,null)

−−−−−−−−−−−−−−−−−−−−−−−−−→ s′

(idi takes thek-th choice ofidj , which does not
concernidi).

[CASE 2] If there are transitions leavings in which idi
is the sender andidi is the first service doing so, that is,
if idi = idsas1

, then we consider the same transitions as in
case 1, though transitions given in (a) and (b) are replaced by

s
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→ sicanchoose.
[CASE 3] If there are transitions leavings in which idi

is the sender andidi is the last service doing so, that is,
if idi = idsas

hs

, then we consider the same transitions as
in case 1, though the transition given in (b) is replaced by

s
(idi−1,alreadychosen)/(null,null)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ sidontchoose, the transi-
tion denoted in (c) is removed, and transition (d) is replaced

by sicanchoose
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→ siwillchoose.
[CASE 4] If there is no transition leavings in which idi is

the sender, that is ifidi 6= idsasj
for all 1 ≤ j ≤ ashs

, then we
consider the same transitions as in case 1, though transitions

given in (a) and (b) are replaced bys
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→
sidontchoose. ut

Theorem 5.2 Let C = (S,M, ID, sin, T ) be a chore-
ography with ID = {id1, . . . , idn}. Let S =
(decentral(C, id1), . . . , decentral(C, idn)). For all
confx ∈ {conf′s,conf

′
p, conf′,conffs

′, conffp
′,

conff′} we haveS confx C. ut

Definition 5.3 We have thatdecentral’(C, idi) is de-
fined asdecentral(C, idi) in Definition 5.1 after replac-

ing the transition (e.3) bysichoose′
j

(null,null)/(null,null)
−−−−−−−−−−−−−−−−−−→

sichoosej1
and replacing the second transition denoted in (f.1)

by sifollowjk

(idj ,m)/(null,null)
−−−−−−−−−−−−−−−→ s′. ut

Theorem 5.4 Let C = (S,M, ID, sin, T ) be a chore-
ography with ID = {id1, . . . , idn}. Let S =
(decentral’(C, id1), . . . , decentral’(C, idn)). For
all confx ∈ {conf′

s,conf
f
s
′} we haveS confx C. ut
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