
University of Castilla-La Mancha

A publication of the
Department of Computing Systems

Towards consistency in general dependency networks

by
José A. Gámez and Juan L. Mateo and José M. Puerta

Technical Report #DIAB-08-04-1 April 2008

COMPUTING SYSTEMS DEPARTMENT
COMPUTER SCIENCE SHCHOOL

UNIVERSITY OF CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

1



Towards consistency in general dependency

networks

José A. Gámez Juan L. Mateo José M. Puerta

April 29, 2008

Abstract

Dependency networks are a probabilistic graphical model that claim
several advantages from other models like Bayesian networks and Markov
networks, for instance. One of these advantages in general dependency
networks, which are the object of study in this work, is the ease of learn-
ing from data. Nonetheless this easiness is also the cause of its main
drawback: inconsistency. A dependency network cannot encode the prob-
ability distribution underlaid in the data but an approximation. This
approximation can be enough good for some applications but not in other
cases.

In this work we make a study of this inconsistency and propose a
method to reduce it. From the conclusions we have taken from this anal-
ysis we have developed an algorithm that has to be run after the standard
learning algorithm yields its solution. Our method is an heuristic ap-
proach so we cannot assure that the resulting model is fully consistent,
however we have carried out some experiments which make us to think
that it produces high quality models and therefore is advisable its use.

1 INTRODUCTION

Probabilistic graphical models (PGM) (Lauritzen, 1996; Jensen and Nielsen,
2007) have been deeply under research and have been used in many applica-
tions in the last two decades because they combine a good way to represent
knowledge readable for humans with a strong theoretical foundation based on
probability theory. There are several kinds of PGMs like decision graphs or
Markov networks (MN), but probably the most famous and used are Bayesian
networks (BN). A BN can be built from data, from expert knowledge or both,
and can be used for different purposes, for instance decision making support,
risk analysis, relationship visualization and interpretation, etc. The idea of BNs
is based on modeling a domain in which the objects or entities are represented
by random variables because they have attached uncertainty about their value.
This uncertainty is modeled by means of a joint probability distribution for all
the variables. The objects in the domain typically exhibit some relations or

2



dependencies and we use a directed acyclic graph to encode those dependencies
with links in the graph where the nodes represent the objects.

Thus, with a BN we can represent qualitatively and quantitatively the rela-
tionships between the entities in the domain by means of the graphical repre-
sentation and the probability measure respectively. In a BN the graph always
has to satisfy the Markov condition given the joint probability distribution, i.e.
every variable is conditionally independent of all its non-descendant given its
parents, then the joint probability distribution can be recovered from the set
of conditional probability distributions, one for every variable given its parents,
reducing notably the complexity of the model.

In a BN we know that if we set the values for the parents for a given variable
there is no influence from the variables which are above the parents in the topo-
logical order, nonetheless still this variable can be influenced by other variables.
The set of variables which define entirely one given and makes it independent
of all the others in the domain is called Markov blanket set (MB). In a BN the
MB consists of the parents, the children and the parent of the children in the
graph.

Dependency networks (DN) are a probabilistic graphical model proposed by
(Heckerman et al., 2000) as an alternative to BN. The main difference between
them is that the graph in DN does not have to be acyclic. The parametric
component is the same, i.e. every variable has a conditional probability dis-
tribution given its parents. Another difference is that in DNs the parents for
each variable is the set of variables which make it independent from the other
variables, i.e. its MB in the Bayesian network encoding the same domain.
This is the reason why the graph of a dependency network can be cyclic, we
can have bi-directional links, apart of other cycles, because in a BN for every
variable (Xi), every variable in its MB (Xj) has Xi in its own MB, that is
∀Xj ∈MB(Xi)⇒ Xi ∈MB(Xj).

In (Heckerman et al., 2000) are presented some tasks in which DNs can be
worthwhile like probabilistic inference, collaborative filtering and visualization
of relationships. Nonetheless, from the automatic learning point of view DNs
have a drawback because its not easy to learn a set of conditional probabil-
ity distributions which satisfied the definition given above. That is the reason
the authors relaxed the definition of DNs and they defined general dependency
networks, however now we cannot expect that with the set of conditional proba-
bility distributions we were able to recover the joint probability distribution but
an approximation. Heckerman et al. (2000) argue that this approximation can
be better as the amount of data used in the learning process increases, however
it still is an approximation.

In this work we want to analyse how this approximation can deteriorate the
performance of a DN model and we propose a way to improve the whole model
with a minimun computational cost.

In section 2 we present a more formal and detailed definition of DNs. In
section 3 we make an analysis of the inconsistencies that can appear in general
DNs. In section 4 we explain our proposal to reduce those inconsistencies. In
section 5 we describe some experiments we have carried out in order to validate

3



our proposal and show the results. Finally in section 6 we conclude with the
final remarks.

2 DEPENDENCY NETWORKS

Dependency networks were proposed in (Heckerman et al., 2000) in response
to a common complaint over BNs according to the authors. This complaint is
based on the visualization properties of BNs, because they have been used as
a tool which let humans visualize relationships learned from data. Using the
graph of a BN we can easily interpret the knowledge encoded in that BN looking
at the links for every variable.

Specially if a BN encodes causal relationships anybody can understand
quickly all the interaction between the objects in the model. Nonetheless, is
more difficult to learn causal relationships from data and not all BNs have this
kind of representation. Moreover, an untrained individual would understand at
a first glance that only the parents can give information about a given variable.
Of course, is easy to learn that not only the parents, but the children and par-
ents of the children are needed to define completely a given variable and avoid
interferences of other variables.

Thus, that is the main reason why DNs were created. In (Heckerman et al.,
2000) authors use the example in Figure 1, in subfigure (a) is depicted a BN
with three variables. If we interpret the relationships as causal ones then we
can say that Age and Gender are causes of Income, or in other way Income is
affected by our knowledge about Age and Gender. Even though this is true there
are more dependencies beyond this first interpretation. Our knowledge about
Income also affects the value of Age and Gender despite the link is oriented in
the opposite direction, and if we do not know anything about Income then Age
and Gender are independent, but if this fact changes then these two variables
become dependent.

So, we can say that in a way or another all variables are related and in order
to make a model more visually attractive every variable in that case should be
connected with the other two. That is the aim of DNs in which every variable
has as parents the MB set in the BN for the same domain, and then in this case
the graph for the DN would be the one depicted in Figure 1(b).

So far we have explained the basic idea behind DNs, next we present a formal
definition. We assume from now on that all variables are discrete, although the
definition can be extended for continuous variables.

2.1 CONSISTENT DEPENDENCY NETWORKS

Given a set of variables X = {X1, . . . , Xn} with a positive joint probability
distribution P (X), a consistent dependency network for this domain consists of
a pair (G,P) where G is a directed graph (not necessarily acyclic), in which every
node represents a variable, and P is a set of conditional probability distributions.
In G the set of parents for each variable Xi, denoted by Pai, is formed by all

4



Age Gender

Income

(a)

Age Gender

Income

(b)

Figure 1: Example of a Bayesian and a dependency network for the same domain
taken from (Heckerman et al., 2000).

those variables such that verify

P (Xi|Pai) = P (Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn). (1)

So if P (X) is faithfull to a graph, what is a common assumption in machine
learning algorithms, then the parents for a given variable in a DN are its MB
set. Other way to say so is that a DN has the same adjacencies than a MN.

A DN is consistent in the sense that all the conditional probability distribu-
tions in P can be obtained from the joint probability distribution P (x), i.e. we
can obtain P (X) from P in a similar way than in an BN or MN.

P (X) =

n∏

i=1

P (Xi|Pai)

In (Heckerman et al., 2000) is shown the equivalence between DNs and MNs.
The only difference is that in MNs the quantitative component is provided
by potential functions whereas in DNs is provided by conditional probability
distributions. Given this equivalence one approach to learn DNs from data can
be to learn a MN in order to obtain the structure and then compute the set
of conditional probability distributions from the MN via probabilistic inference.
Other possibility suggested also in that paper is to learn another probabilistic
model (a BN for instance) and translate it into a DN. Nonetheless the problem
with these approaches is that the conversion can be computational expensive
and inefficient in many cases. That is the reason why the authors presented
another definition for DNs more relaxed in order to ease the automatic learning
from data. This new definition is covered in next section.

2.2 GENERAL DEPENDENCY NETWORKS

A consistent DN is not attractive from an machine learning point of view because
of the difficulties related with obtaining the set of conditional probability distri-
butions, specially with the restriction that this set has to be consistent with the
joint probability distribution for the variables in the domain. So general DNs,
also described in (Heckerman et al., 2000), are based on the idea of removing

5



those restriction about consistency. Thus every single conditional probability
distribution P (Xi|Pai) can be estimated independently from the others by any
probabilistic classification method. Are proposed techniques such as a decision
tree (Buntine, 1991), a generalized linear model (McCullagh and Nelder, 1989),
a neural network (Bishop, 1995), a probabilistic support vector machine (Platt,
1999), or an embedded classification model (Heckerman and Meek, 1997). Once
we have all the conditional probability distributions we can build the structure
of the dependency network from the (in)dependencies that are appeared during
the learning process.

This way of learning a DN can be more efficient than learning from a MN in
many cases, and other advantage is that its parallelization is straightforward,
what can report a great benefit if we are dealing with a domain with a large
number of variables. Nonetheless this heuristic approach has a disadvantage,
due mainly to the independent search over the variables and poor estimations
in small datasets, the learned conditional probability distributions may not be
consistent with the joint probability distribution, this can be called parametri-
cal inconsistency. But also structural inconsistencies can appear because after
learning the conditional probability distribution we can see that, for instance,
Xi can be parent of Xj but not the opposite, i.e. the conditional probability
distribution for Xi would not contain Xj but the conditional probability dis-
tribution for Xj would contain Xi. In (Heckerman et al., 2000), authors argue
that this inconsistencies can be reduced as the amount of data used for leaning
increases.

A formal definition for this new model is as follows. Given a set of variables
X = {X1, . . . , Xn}, consider the set of conditional probability distributions
P = {P1(X1|X\X1), P2(X2|X\X2), . . . , Pn(Xn|X\Xn))}. It is not required
that these distributions be consistent with P (X), i.e. it is not required that
this set be obtained via inference from the joint probability distribution. Under
these conditions a dependency network for X and P is the pair (G,P ′), where
G is a directed graph usually cyclic and P ′ is a set of conditional probability
distributions such that

Pi(Xi|Pai) = Pi(Xi|X\Xi) (2)

for every Pi ∈ P .

2.3 INFERENCE

In any case, with a consistent or general dependency network, given the likely
existence of cycles in the graph we cannot use exact inference algorithms used
in BNs and some of the approximate. In the case of consistent DNs it can be
converted to a MN and use standard techniques for probabilistic inference over
MNs. Nonetheless a more general option is suggested in (Heckerman et al.,
2000) for both models, Gibbs sampling (Geman and Geman, 1984). Basically
this method works by repeatedly cycling through each variable in a fixed order
during all the process, and sampling each Xi according to P (Xi|Pai). This

6



procedure is called ordered Gibbs sampler but in the case of a general DN, given
that the conditional probability distributions may not be consistent with the
joint probability distribution, is called ordered pseudo-Gibbs sampler. Besides
it is developed a more efficient method which can avoid some sampling and it
is called modified ordered (pseudo-)Gibbs sampler. This method, in order to get
P (Y|Z) and the value of Z is z for a DN in a domain with a set of variables X,
is shown in Figure 2.

1 U = Y (∗ the unprocessed v a r i a b l e s ∗)
2 P = Z (∗ the proces s ed and cond i t i on i ng v a r i a b l e s ∗)
3 p = z (∗ the va lues o f P ∗)
4 While U 6= ∅
5 Pick Xi ∈ U s . t . Xi has no more par ents in U than any va r i ab l e

in U

6 I f a l l par ents o f Xi are in P

7 P (Xi|p) = p(Xi|Pai)
8 E l s e
9 Use modi f i ed ordered Gibbs sampling to get P (Xi|p)

10 U = U − Xi

11 P = P + Xi

12 p = p + xi

13 Return the product o f the c ond i t i o n a l s P (Xi|p)

Figure 2: Modified ordered Gibbs sampler

The key point is in line 6, because if are known the values for all the parents
for a given variable we can avoid the sampling for that variable and just take its
value from its conditional probability distribution. This algorithm is justified
by Equations 1 and 2.

In (Heckerman et al., 2000) is discused whether the use of a sampling process
can increase the parametrical inconsistencies in a general DN. The conclusion
is that it should not be a determinant fact but more research should be done
in order to characterize better this behavior and assure a good performance of
DNs.

However, given the modified ordered Gibbs sampler, there are some situa-
tions in which we can avoid completely the sampling. For instance if we use a
DN as a classifier and we assume that we always know the values for all predic-
tive variables (Gámez et al., 2006). Other case is when is needed to obtain the
probability for a full configuration in a DN, i.e. P (X) when we have fixed the
value for every single variable. We can see this computation in other way

P (X) =
n∏

i=1

P (Xi|X\Xi).

If we take the right part of the equation and use the modified ordered Gibbs
sampler we have that Y = {Xi} and Z = {X\Xi}, in line 5 we have only one
choice and in line 6 the condition is true so the sampling is avoided. Therefore
we can compute statistics such as the likelyhood of a DN for a dataset, and we
assume that the dataset does not contain missing data, without any sampling.

7



3 ANALYSIS OF PARAMETRICAL INCON-

SISTENCY

In this section we want to analyse some issues regarding with inconsistency in
DNs. From now on we consider only general DNs.

Example 1 Consider the case in which we have two variables, X and Y , and
they are dependent, then the DN for this domain, DN , should have a graph with
two links X → Y and X ← Y .

Hence P ′ = {P (X |Y ), P (Y |X)} for DN . However is clear that P (X, Y ) 6=
P (X |Y ) · P (Y |X). In fact

P̂ (X, Y ) = P (X |Y ) · P (Y |X) =
P (X, Y ) · P (X, Y )

P (X) · P (Y )
.

So we can define the estimated joint probability distribution defined by DN in
this way

P̂ (X, Y ) = f(X, Y ) · P (X, Y ), (3)

where

f(X, Y ) =
P (X, Y )

P (X) · P (Y )

Therefore, even in a situation so simple like this one, we cannot expect to
have a DN without inconsistencies, when it is learned from data of course.
Moreover, looking at Equation 3 we can say that the inconsistency is smaller as
the dependency between X and Y is weaker and f(X, Y ) tends to 1.

In (Heckerman et al., 2000) they propose learn DNs by means of probabilistic
decision trees. This model are very good to encode contextual dependencies.
Encoding the conditional probabilities distribution in this way can help to reduce
the inconsistencies because a decision tree tries to represent a more general
probability distribution by pruning some branches which are similar. Then the
dependence between the variables can be smoothed and thus f(X, Y ) is closer to
1. However if this happens we have a poorer estimation for the joint probability
distribution even though is less inconsistent.

In order to illustrate that we can use the next example.

Example 2 Considering the model in Example 1 and both variables are discrete
with three states and their joint probability distribution is defined by this table:

Y=0 Y=1 Y=2

X=0 0.12 0.04 0.04

X=1 0.06 0.18 0.06

X=2 0.10 0.10 0.30

When we compute P (X |Y ) and P (Y |X) from P (X, Y ) in the way of a
probability table or a full expanded probabilistic decision trees (see Figure 3 (a)
and (b)) we obtain an estimation P̂1(X, Y ) which is shown in Figure 3(c):

8



Y

0.43;0.21;0.38
0.13;0.56;0.31

0.10;0.15;0.75

=0
=1

=2

(a)

X

0.60;0.20;0.20
0.20;0.60;0.20

0.20;0.20;0.60

=0
=1

=2

(b)

Y=0 Y=1 Y=2

X=0 0.257 0.025 0.020

X=1 0.043 0.338 0.030

X=2 0.075 0.063 0.450

(c)

Figure 3: Joint probability distribution P̂1(X, Y ) (c) obtained using full decision
trees for conditional probability distributions P (X |Y ) (a) and P (Y |X) (b).

We can see large differences between the true figures and the estimation.
Besides we can check that P̂1(X, Y ) is not a probability distribution because∑

x,y P̂1(x, y) = 1.301 6= 1. If, for instance, the learning procedure decides to
change the representation of P (X |Y ) for a probabilistic decision tree in which
branches for values 0 and 1 are merged (Figure 4(a)), because they are the most
similar, then we obtain a new estimation P̂2(X, Y ) which is shown in Figure 4(b).
P̂2(X, Y ) still differs from P (X, Y ) but is closer to it than P̂1(X, Y ) in average,
and also is closer to be a probability distribution because

∑
x,y P̂2(x, y) = 1.170.

Y

0.28;0.39;0.34 0.10;0.15;0.75

6= 2 =2

(a)
Y=0 Y=1 Y=2

X=0 0.166 0.055 0.020

X=1 0.078 0.233 0.030

X=2 0.069 0.069 0.450

(b)

Figure 4: Joint probability distribution P̂2(X, Y ) (b) obtained using a simpler
decision tree for P (X |Y ) (a).

Therefore in spite of the use of probabilistic decision trees we still have an
approximation which could not be good enough for some applications. In next
section we present a simple heuristic method that can reduce inconsistencies in
DNs improving its accuracy.

9



4 HOW TO IMPROVE CONSISTENCY

As it has been seen in the previous Section even in a simple case like Example
2 we cannot expect to get a consistent DN if the conditional probability distri-
butions are learned independently. If two variables are dependent this equation
P (X, Y ) = P (X |Y ) · P (Y |X) will never be true, nonetheless this expression
P (X, Y ) = P (X) ·P (Y |X) = P (X |Y ) ·P (Y ) is always true and does not matter
if both variable are dependent or not. Bearing this in mind, in Example 2 we
can ensure consistency if at the end of the learning process we realize that X is
a predictive variable for Y and vice versa and then instead of maintaining both
conditional probability distributions we replace P (X |Y ) by P (X) or P (Y |X) by
P (Y ). This is the basic idea of our proposal, but there is not so easy when there
are more variables involved. In that case we do not expect to obtain the best set
of probabilities whose composition yield the right joint probability distribution,
but a good approximation and, more important, more consistent.

More precisely the proposal consists in estimating a set of conditional prob-
ability distributions of a BN that encode the same (in)dependencies that the
learned DN. We have to point out that our proposal only changes the set of
probability distributions but not the graph, so the model learned still has the
same advantages about visualization. However, given that the relationships rep-
resented in a DN can be encoded by several BNs with different factorizations
of the joint probability distribution, and that the conversion from DN to BN
can not be attractive from the computational point of view, this proposal is
based on a heuristic approach whose complexity order is linear in the number
of dependencies found. The method proposed is shown in Figure 5.

1 For each va r i ab l e Xi

2 For each p r ed i c t i v e va r i ab l e Yj o f Xi

3 I f Xi i s a l s o a p r e d i c t i v e va r i ab l e o f Yj

4 I f the cond i t i on i ng s e t o f Xi i s g r a t e r that Yj ’ s
5 Yj i s removed as p r e d i c t i v e va r i ab l e o f Xi

6 El s e
7 Xi i s removed as p r e d i c t i v e va r i ab l e o f Yj

Figure 5: Proposed method to obtain a more consistent set of conditional prob-
ability distributions.

We can call this new step in the learning process as parametric reduction.
An important point in this procedure is in line 4. With this condition we want
avoid large conditioning sets, what can reduce overfitting in the parameters
estimation. The order in which the links can be traversed can be any although
not all of then will yield the same solution. The reason for that is the heuristic
nature of this algorithm and that a more sophisticated search would not be
interesting for practical reasons. One of the benefits of DNs is ease of learning
so we do not want to change that by introducing a complicated post-learning
algorithm.

10



After performing this step is needed to re-compute every probability distri-
bution which has been modified. In the case that these probability distributions
are in form of probability trees, if the removed variables are in the leaves the
only thing to do is to aggregate its values to the up node in the tree, otherwise
the entire tree should be re-built. However, if in the learing process we have
cached the statistics the new tree can be built without computational cost. In
the case of probability tables we can differ the leaning of these tables after that
step.

5 EXPERIMENTAL RESULTS

This section is devoted to evaluate our proposal with some experiments. Our
testing framework is base on the one used in (Heckerman et al., 2000) for testing
probabilistic inference with real data. We use the same score function for a test
dataset with N instances {d1, . . . , dN} and n variables:

score(d1, . . . , dN |model) = −

∑N

i=1
ln P (di|model)

nN
. (4)

However, instead of using real dataset we prefer using data sampled from
known BNs. The reason is that we want focus only in parametrical learning and
inference so if the real dependencies are known we can give this information to
the different algorithms in order to avoid that the results were affected by the
structural learning. Next we present a detailed description of our experimenta-
tion.

5.1 DESCRIPTION OF THE EXPERIMENTS

We have selected seven BNs from different sources: alarm (Beinlich et al., 1989),
asia (Lauritzen and Spiegelhalter, 1988), car-starts and headache (Elvira Con-
sortium, 2002), insurance (Binder et al., 1992), credit (DSL) and water (Jensen
et al., 1989), which is a dynamic network and we have use only the two first
slices. Some details of these networks can be seen in Table 1. From each of
these networks we have sampled two datasets with 5000 instances each one, one
for training and one for testing.

We have defined eight models to make a comparison between them. First
one is the reference model and is a BN in which the structure is fixed with
the real links (BN-f). Second model is an empty network (Empty). Next we
have three dependency networks models, one with probability tables in which
links have been fixed from the real MB for each variable in the network (PT-
f), other with probabilistic decision trees learned from data (PDT), and other
with probabilistic decision trees but in which the search space for each PDT have
been restricted to the real MB (PDT-f). In both cases we use the sugested value
for κ = 0.1. For any of these three models we have another version in which
we have used our method for reducing the conditional probability distributions.

11



Table 1: Set of Bayesian networks used in our experiments.

Num. States Aver. MB Aver.
network vars range states range MB

alarm 37 2-4 2.84 1-12 3.89

asia 8 2-2 2.00 1-5 2.50

car-starts 18 2-3 2.06 1-9 3.44

credit 12 2-4 2.83 2-6 3.67

headache 12 1-4 2.92 1-4 2.67

insurance 27 2-5 3.30 1-16 6.22

water 16 3-4 3.63 1-12 6.00

These new models are labeled with an asterisk (PT-f*, PDT* and PDT-f*). In
all cases parameters are learned from data by using Laplace smoothing.

Every model has been learned with each training dataset. For all of them
it has been computed their score (Equation 4) with the test dataset. As the
model BN-f is the reference one we have also obtained the absolute difference
of score between each model and BN-f. This value is more informative because
we are looking for models closer to the true probability distribution what is
represented by BN-f. Besides, we have computed also the summation of all
possible configurations, i.e. total joint probability, which should be equal to
1, but only for those models with a tractable number of configurations (asia,
car-starts, credit, headache).

5.2 RESULTS

In Table 2 we report the score value for every model and dataset. At the botton
line we show the average value for each model. Lower values should indicate a
better model, so all pure DN models should be taken as the best ones. However
that does not make sense because they are even better than our reference model
(BN-f) which represents the true joint probability distribution. The reason
is that, as we have seen in Section 3, inconsistent DNs tend to have greater
probability values in average so theis score is lower. That is the reason why we
preffer pay more attention to the difference with respect to the reference model.

Thus, these new results are shown in Table 3. There we can see that always
the model closer to BN-f is the one in which we have applied our proposal.
Specially the model based on probability tables is always the best one but in
two datasets. Also is important to notice that our proposal improves the original
model in every dataset for PT-f model. However, in PDT model our proposal
deteriorates the accuracy in alarm and headache dataset, although in average its
application improves the global accuracy.

Another interesting point is that PDT models without our proposal are much
better that PT-f. That corroborate the idea that for DNs the use of more general

12



Table 2: Score for each model and dataset.

BN-f Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

alarm 0.282 0.397 0.173 0.298 0.253 0.342 0.242 0.338

asia 0.287 0.342 0.224 0.289 0.225 0.287 0.225 0.289

car-starts 0.127 0.175 0.070 0.127 0.070 0.136 0.070 0.127

credit 0.879 0.959 0.765 0.886 0.807 0.888 0.807 0.900

headache 0.435 0.609 0.214 0.435 0.419 0.585 0.419 0.593

insurance 0.490 0.651 0.399 0.519 0.420 0.556 0.420 0.550

water 0.401 0.410 0.417 0.410 0.388 0.409 0.388 0.408

0.414 0.506 0.323 0.423 0.369 0.458 0.367 0.458

Table 3: Absolute score difference between BN-f and the other models.

Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

alarm 0.115 0.110 0.015 0.029 0.060 0.040 0.056

asia 0.055 0.062 0.002 0.062 0.000 0.062 0.002

car-starts 0.048 0.057 0.000 0.057 0.009 0.057 0.000

credit 0.080 0.114 0.007 0.071 0.009 0.071 0.021

headache 0.174 0.222 0.000 0.017 0.150 0.017 0.158

insurance 0.161 0.092 0.029 0.070 0.066 0.071 0.059

water 0.009 0.016 0.010 0.013 0.008 0.013 0.007

0.092 0.096 0.009 0.046 0.043 0.047 0.043

encoding for the conditional probability distributions is advisable despite that
this encoding is also an approximation in many cases.

Previous results give us an idea about the quality of those model. We can
suppose that the increment in accuracy must be related with the reduction in
the inconsistency. Additionally we have checked if the models encode a real
probability distribution, i.e. whether the total joint probability for a given
model is equal to one. This computation has been only done for the models
learned with the smaller networks because this computation is computationally
unfeasible for the others. The result is shown in Table 4. According with the
table is clear that the pure DN models are quite far form being a probability
distribution, but our proposal achieve that condition for all of them.

6 CONCLUSIONS

In this paper we have presented a novel method which aims to improve DNs.
The main advantage of (general) DNs is that they can be learned from data
easily, in fact easier than BNs because of the lack of restrictions about cyclicity
and easier than MNs because conditional probability distributions can be learn

13



Table 4: Total joint probability for tested models.

BN-f Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

asia 1.00 1.00 3.60 1.00 3.42 1.00 3.42 1.00

car-starts 1.00 1.00 20.04 1.08 11.40 1.00 11.40 1.00

credit 1.00 1.00 6.41 1.00 4.26 1.00 4.26 1.00

headache 1.00 1.00 29.68 1.00 5.70 1.00 5.70 1.00

independently. Nonetheless this is also the main problem, the independent
learning can lead to inconsistencies. These inconsistencies can be both structural
and parametrical, however the later are more important. Whereas structural
inconsistencies can be interesting for a better interpretation of the model (strong
and weak dependencies), parametrical ones deteriorate model performance.

Thus our proposal is based on improving DNs accuracy by reducing condi-
tional probability distributions, because, as it has been seen in Section 3, the
use of full distributions is the cause of that inconsistencies. Is worthy to point
out that our proposal does not change the qualitative component of a model, i.e.
its links. This new method, that can be seen as a post-learning stage, works by
trying to recover a set of conditional probability distributions similar to a BN
which represents the same relationships between variables. In order not to lose
the computational advantage of the DNs learning we have chosen a heuristic ap-
proach. This approach has a linear complexity order in the number of links. Its
heuristic nature can be object of complaint, nonetheless in our experimentation
we have made clear its benefit.

We plan to extend this work in two lines as future work. First we plan to
make a deeper analysis of our proposal checking the performance with different
sample sizes and different ordering in the reduction step and see whether it
affects the results. Besides we want to test probabilistic queries for different set
of variables with evidence in which we have to use Gibbs sampling. The second
line of work is applying this method to scenarios where DNs have been use in
order to improve their results, such as classifiers or Estimation of Distribution
Algorithms.

Acknowledgements

This work has been partially supported by Spanish Ministerio de Educación y
Ciencia (project TIN2004-06204-C03-03); Junta de Comunidades de Castilla-La
Mancha (project PBI-08-048) and FEDER funds.

References

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARM
monitoring system: A case study with two probabilistic inference techniques

14



for belief networks. In Proc. of the 2nd European Conf. on Artificial Intelli-
gence in Medicine, pages 247–256, 1989.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic
networks with hidden variables. Machine Learning, 29(2):213–244, 1992.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

W. Buntine. Theory refinement on bayesian networks. In Uncertainty in Arti-
ficial Intelligence (UAI91), pages 52–60, 1991.

Decision Systems Laboratory DSL. Genie. http://genie.sis.pitt.edu/.

Elvira Consortium. Elvira: An Environment for Creating and Using Proba-
bilistic Graphical Models. In Proceedings of the Fist European Workshop on
Probabilistic Graphical Models, pages 222–230, 2002. http://leo.ugr.es/elvira.

J. A. Gámez, J. L. Mateo, and J. M. Puerta. Dependency networks based
classifiers: learning models by using independence test. In Third European
Workshop on Probabilistic Graphical Models (PGM06), pages 115–122, 2006.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:147–156, 1984.

D. Heckerman and C. Meek. Models and Selection Criteria for Regression and
Classification. Technical Report MSR-TR-97-08, Microsoft Research (MSR),
May 1997.

D. Heckerman, D. M. Chickering, and C. Meek. Dependency networks for in-
ference, collaborative filtering and data visualization. Journal of Machine
Learning Research, 1:49–75, 2000.

F. V. Jensen and T. D. Nielsen. Bayesian networks and decision graphs.
Springer, 2007.

F. V. Jensen, U. Kjærulff, K. G. Olesen, and J. Pedersen. Et forprojekt til
et ekspertsystem for drift af spildevandsrensning (an expert system for con-
trol of waste water treatment — a pilot project). Technical report, Judex
Datasystemer A/S, Aalborg, Denmark, 1989.

S. L. Lauritzen. Graphical Models. Oxford Univesity Press, 1996.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of
the Royal Statistics Society, Series B, 50:157–194, 1988.

P. McCullagh and J. Nelder. Generalized Linear Models. Chapman and Hall,
1989.

15



J. Platt. Advances in Kernel Methods – Support Vector Learning, chapter Fast
training of support vector machines using sequential minimal optimization,
pages 185–208. MIT Press, 1999.

16


