
University of Castilla-La Mancha

A publication of the

Computing Systems Department

Extending GridSim to Provide Computing
Resource Failures

by

Agust́ın Caminero, Blanca Caminero, Carmen Carrión

Technical Report #DIAB-07-01-1 January, 2007

This work has been carried out during a research stay of the first author in the GRIDSLab

of the University of Melbourne (Australia), funded by the following projects: Consolider

CSD2006-46, CICYT TIN2006-15516-C04-02, PBC-05-007-01, PBC-05-005-01 and José

Castillejo grant.

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS

ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n

Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

Extending GridSim to Provide Computing Resource

Failures

Agust́ın Caminero, Blanca Caminero, Carmen Carrión
Computing Systems Department. Escuela Politécnica Superior

Universidad de Castilla-La Mancha. 02071 - Albacete, SPAIN

{agustin, blanca, carmen}@dsi.uclm.es

March 8, 2007

Abstract

Grid technologies are emerging as the next generation of distributed com-

puting, allowing the aggregation of resources that are geographically distributed

across different locations. One of the key points of grid computing is that the

independence and autonomy of the resources are preserved at all times. This

means that the administrator of a resource connected to a grid will make deci-

sions as if the resource were isolated. So he may, e.g., disconnect the resource

from the grid. Moreover, resources may suffer failures, and all of this obviously

would affect the performance received by the users. In this paper we present an

extension to one of the most populars grid simulators, GridSim [11], to support

variable resource availability.

1 Introduction and motivation

Grid technologies are emerging as the next generation of distributed computing, al-

lowing the aggregation of resources that are geographically distributed across different

1

locations. Grid systems are highly variable environments, made of a series of inde-

pendent organizations that share their resources, creating what is known as virtual

organization, VO. One of the key points of grid computing is that the independence

and autonomy of the resources is preserved at all times. This means that the admin-

istrator of a resource connected to a grid will make decisions as if the resource were

isolated. So he may, e.g., disconnect the resource from the grid. Moreover, resources

may suffer failures, and all of this obviously would affect the performance received by

the users.

Simulators are a basic tool to carry out research in many different fields. Up

to now, grid simulators could simulate a wide variety of features, but were not able

to simulate the variable availability of resources. So, providing computing resources

failure simulation is key in order to simulate a real grid system.

The paper is structured as follows: first of all, we enumerate some grid simulators,

explaining their main features, and stressing the fact that none of them can simulate

the variable availability of resources. One of the simulators explained is GridSim, which

is the simulator that has been extended to support this new functionality. After that,

we concentrate our attention in this new functionality, explaining the new behavior

and the actual implementation. The last, we present a sample output of the GridSim

simulator including this new feature, and draw some conclusions.

2 Related Work

A number of simulation tools have been developed in order to carry out research in

the field of grid systems, but they do not provide mechanisms to simulate computing

resources failure. Some of those simulators will be commented the next, paying special

attention to GridSim [11] as it is the simulation tool we use for our developments.

2

OptorSim is a grid simulator designed to test dynamic replication strategies used

in optimizing data location within a grid. Each simulated site contains several storage

or computing elements. Simulated jobs run and file accesses may trigger replication [5].

OptorSim is a Data Grid simulator, written in Java, which has been developed in the

framework of the EU DataGRID project. The goal of OptorSim is to allow experimen-

tation with and evaluation of various scheduling and replica optimization algorithms.

Using a grid configuration and a replica optimizer algorithm as input, OptorSim runs

a number of grid jobs on the simulated grid. It also allows a user to visualize the

performance of the algorithm [1].

SimGrid [2] is a toolkit that provides core functionalities for the simulation of

distributed applications in heterogeneous distributed environments. The specific goal

of the project is to facilitate research in the area of distributed and parallel applica-

tion scheduling on distributed computing platforms ranging from simple network of

workstations to Computational Grids.

The MicroGrid [3] provides online simulation of large-scale (20,000 router, thou-

sands of resources) network and grid resources. By creating a virtual grid environment

in which existing middleware and applications can be run unchanged, detailed study

of complex dynamic behavior such as scaling, failure responses, and other emergent

behavior can be explored. The MicroGrid seems to be and ended project, as the last

release came out in 2004.

2.1 The GridSim Toolkit

GridSim [11] supports modeling and simulation of heterogeneous grid resources (both

time- and space-shared), users, applications, brokers and schedulers in a grid comput-

ing environment. It provides primitives for creation of application tasks, mapping of

3

tasks to resources, and their management so that resource schedulers can be simulated

to study the involved scheduling algorithms. GridSim adopts a multi-layered design

architecture. The first bottom layer is the portable and scalable Java interface and

runtime environment called Java Virtual Machine (JVM), whose implementation is

available for single and multiprocessor systems including clusters. The second layer

is SimJava which provides an event-driven discrete event infrastructure on top of the

JVM to drive the simulation for GridSim. The third layer is the GridSim toolkit it-

self, which provides the modeling and simulation of core grid entities such as resources

and information services using the discrete event services defined by the second layer.

The fourth layer provides the simulation of resource aggregators called grid brokers

or schedulers. The last top layer focuses on application and resource modeling with

different scenarios to evaluate scheduling and resource management policies, heuristics,

and algorithms [12].

3 New Feature of GridSim: Computing Resource

Failure

3.1 The Implementation

We have implemented the computing resource failure functionality on GridSim 4.0,

available to download at http://www.gridbus.org/gridsim/. In order to provide

GridSim with this new functionality, several classes have been developed. These classes

are depicted in Figure 2, in italic-bold font. We will explain them next:

• GridUserFailure: as its name suggests, this class implements the behavior of the

users of our grid environment. This is a quite simple class, whose functionality

can be summarized as follows:

4

Figure 1: System architecture of GridSim Toolkit [6].

– Creation of jobs.

– Submission of jobs to resources, which are chosen at random.

– On the failure of a gridlet, choose another resource and re-submit the failed

gridlet to it.

– Poll the resources used to run its gridlets, discover the failure of resources,

and resubmit the gridlets.

– Receive succeeded gridlets.

• AllocPolicyWithFailure: it is an interface, which provides some functions to

deal with resource failures.

• AllocPolicy: it is an abstract class, one of the GridSim classes. Implements the

general behaviour of the scheduling algorithm of the resources.

5

Figure 2: Classes created for the failure functionality.

• SpaceSharedWithFailure: this class is based on SpaceShared GridSim class,

one of the allocation policies already implemented in GridSim. It extends AllocPolicy

and implements AllocPolicyWithFailure. It behaves exactly like First Come

First Serve (FCFS). This is a basic and simple scheduler that runs each Gridlet

to one Processing Element (PE). If a Gridlet requires more than one PE, then this

scheduler only assign this Gridlet to one PE. What makes SpaceSharedWithFailure

different from SpaceShared are the functions already mentioned for AllocPolicyWithFailure.

• TimeSharedWithFailure: this class is based on TimeShared GridSim class, other

allocation policy already implemented in GridSim. It extends AllocPolicy and

implements AllocPolicyWithFailure. It behaves similar to a round robin algo-

rithm, except that all Gridlets are executed at the same time. This is a basic and

simple scheduler that runs each gridlet to one Processing Element (PE). If a gri-

dlet requires more than one PE, then this scheduler only assign this Gridlet to one

PE. As the previous class, what makes TimeSharedWithFailure different from

TimeShared are the functions already mentioned for AllocPolicyWithFailure.

• RegionalGISWithFailure: this class is based on RegionalGIS GridSim class.

The difference between these classes is that RegionalGISWithFailure provides

support for resource failures. To do that, several functions and parameters have

been added or modified:

6

– failureNumResPattern , failureResPattern , failureTimePattern ,

failureLengthPattern , all of them in discrete, continuous and variate

versions. This parameters allow random number generators based on con-

tinuous distributions (like Uniform distribution), discrete distributions (like

Poisson distribution) and variate distributions (like HyperExponential dis-

tribution). These parameters are used to choose the number of resources

that will fail in a simulation, which resource will fail, when and how long

the failure will be. The failureNumResPattern is reused to choose the

number of machines failing at each resource. Also, some functions to get

and set these parameters, and get samples have been developed.

– init(...): initialize this entity.

– GRIDRESOURCE FAILURE, GRIDRESOURCE RECOVERY events, to manage the

resource failures.

– GRIDRESOURCE POLLING event, to manage the polling mechanism.

– processOtherEvent(...): as new events have been added, these events

should be processed in this method.

– registerOtherEntity(...): needed to start the failure process.

– processEndSimulation(...): clears lists and shutdowns other entities.

– getResourceCharacteristics(...): retrieves the characteristics of a given

resource.

– beginning: this parameter defines when the simulation has just began, or

when it has been running for a while.

– pollResource(...): used to send messages to resources, in order to know

which of them are working properly.

– pollReturn(...): used to receive the responses from resources.

7

• AvailabilityInfo: This class is used to implement the polling mechanism. The

user and GIS send objects of this class to the resources, which in turn send it back,

as was explained before. When the resource still has some working machines, it

will send this object back with no delay, but when all the machines of the resource

are out of order, it does it with some delay and an special code. This is done

to simulate a real situation, in which a time out defines when a resource is not

available if it has not replied to the poll.

• GridletSubmission: This class is used to keep track of each job, so that we

know whether a job has already been submitted or not.

• FailureMsg: This class implements the way that the RegionalGISWithFailure

commnunicates with the GridResourcesWithFailure to simulate a resource fail-

ure. Recall that in this implementation, it is the GIS the entity which tells the

resource when, how and for how long they shoud fail. So, this class is used for

that communication.

• Variate: This class is for random number generation via an installable random

number generator. This class belongs to the JSIM [9] simulation tool.

• HyperExponential: As well as the previous class, this class belongs to the JSIM

simulation tool. This class generate a hyperexponentially distributed random

number mean mu and standard deviation sigma (sigma ¿ mu) using Morse’s

two-stage hyperexponential distribution.

• Weibull: This class also belongs to the JSIM simulation tool, and it is a Weibull

random variate generator.

• LCGRandom: Another class from the JSIM simulation tool. It is a basic random

number generator. It is a multiplicative Linear Congruential Generator (LCG).

8

3.2 The Functionality

Basically, this new functionality works as follows:

• At the begining of the simulation, the resources register themselves at one of the

RegionalGIS (Grid Information Service) entities.

• After that, at a random moment during the simulations, each of the GIS entity

tells one or more resources that some of their machines are going to fail.

• In that moment, depending on the allocation policy that the failing resource is

running, and how many machines fail, it will proceed in a different way:

– Space-shared policy (similar to FCFS): if there are still working machines

in this resource, only the gridlets which are being executed in this moment

in the failing machines will be failed, and sent back to the user. If there are

no working machines in this resource, then all the gridlets in this resource

will be failed and sent back to the user, but with a different code, so that

the user can make out that this resource is out of order. The most realistic

behavior, in a real grid, would be not sending the gridlets back to the user

when all the machines of the resource are out of order. But the simulator

does not deal well with entities (in this case, users) waiting for an event (in

this case, a gridlet) that never arrives. So we decided to simulate the real

behavior by using that special code.

– Time-shared policy (similar to round-robin): if there are still working ma-

chines in this resource, no gridlet will be failed, as gridlets are not tightly

allocated to a machine. If there are no working machines in this resource,

then all the gridlets in this resource will be failed and sent back to the user,

with the same special code explained before.

9

• On the reception of a failed gridlet (with normal code), the user will query the

GIS entity for the list of available resources, will choose one of them, and will

submit the gridlet to that resource.

• On the reception of a failed gridlet with the special code, the user will schedule

the resubmission of that gridlet for a given moment in the future. This moment

will be based on the polling time of the user. This is done like this to simulate

a polling mechanism, which would allow the user to discover the failure of a

resource.

• The GIS entity will, from time to time, poll all the resources. When a resource

responds to that poll, then it is working, although some of its machines may be

out of order. If all the machines of the resource are out of order, then the resource

would respond the poll with an special code. This is done because the simulator,

as was mentioned before, does not deal well with entities (in this case, the GIS)

waiting for an event (in this case, a poll response) that never arrives. In this

case, the resource would wait for a given time before sending the response to the

user. This is done to simulate the real behavior of a polling mechanism, where

the GIS would send the poll, wait for the response during a given time, and, on

the time out, set the resource as unavailable. If a resource is not available, then

the GIS will remove that resource from its list of available resources.

• In order to perform the recovery, the GIS entity will tell the failed resources to

recover.

• When a resource where all the machines were out of order recovers from that

failure, it will proceed to register to the GIS again.

• When all the gridlets have been successfully executed, the simulation will finish.

10

In the Figure 3 we can see a sequence diagram explaining the behavior of the

computing resource failure functionality of GridSim. For the sake of clarity, we have

omitted the polling mechanism, which is depicted in Figure 4. A more in depth expla-

nation of that functionality is the following, where the steps refer to the numbers in

the Figure 3:

• In the beginning, simulations start running, and the RegionalGISWithFailure

entity schedules a GRIDRESOURCE FAILURE event to itself for a random moment in

the future. The moment when this event takes place will be the starting point of

the failure functionality. At the same time, it will schedule a GRIDRESOURCE POLLING

event to itself for a given moment in the future to start the polling process.

The polling time for the GIS will be twice that of the user. All of this hap-

pens in the registerOtherEntity() function, and we do not do anything else

in this moment because resources still have not registered themselves, so the

RegionalGISWithFailure entity does not know how many of them there are

(step 1).

• Also, users schedule a SUBMIT GRIDLET event for a random noment in the future,

so that all the users start submitting their gridlets at a different moment. On the

reception of this event, the user will query the GIS for a list of available resources.

Then, he will choose one of them and will submit the gridlet (step 2).

• On the reception of the GRIDRESOURCE FAILURE event (function

processOtherEvent(...)), RegionalGISWithFailure starts the failure func-

tionality. What this entity does the next is check the list of available resources

and choose how many of them will fail, and when each resource will fail. Then,

it will schedule as many GRIDRESOURCE FAILURE events to itself as resources will

fail, each event for the moment when the resource will fail (in the Figure 3, only

one resource will fail (step 3).

11

• On the reception of this second GRIDRESOURCE FAILURE event (function

processOtherEvent(...)), the RegionalGISWithFailure entity will choose which

resource will fail, among those which are totally available at this moment. This

means that resources which have any of their machines failed at this moment

will not be chosen. Besides, it will choose how many machines will fail on this

resource, and how many hours the failure will last. Then, the GIS entity will

forward the GRIDRESOURCE FAILURE event to the resource chosen, including the

information mentioned before. The last thing that the GIS entity will do is sched-

ule another event for itself. This time the event is a GRIDRESOURCE RECOVERY and,

as its name suggests, it will denote the time when the resource will be back to

life again. For the sake of easiness, we have the assumption that all the failed

machines of a resource will get failed and be recovered at the same time (step 4).

• When the computing resource (GRIDRESOURCE FAILURE entity) receives the

GRIDRESOURCE FAILURE event, then it will set some of its machines as out of

order, as many machines as the data coming along with the event say. Then,

all the processing elements (PEs) of that machine will be set as out of order as

well (step 5). Depending on the allocation policy of the resource, and how many

machines fail, several things may happen:

– Space-shared allocation policy (similar to FCFS): if there are still work-

ing machines in this resource, then the gridlets allocated to the failed PEs

will be returned back to the user, and their status set to FAILED. The gri-

dlets which have been allocated to other PEs would go on without problems,

as well as the gridlets waiting in the queue. For the following allocations of

gridlets to PEs, only the working PEs will be taken into account by the allo-

cation policy. If there are no working machines in this resource, then all the

gridlets will get their status set to FAILED RESOURCE UNAVAILABLE

and sent back to the user. The status FAILED RESOURCE UNAVAILABLE

12

is the special code mentioned before, used only to allow simulations to finish

properly. Otherwise, the user entity would get jammed, as it is waiting for

an event that never arrives.

– Time-shared allocation policy (similar to Round-Robin): if there are

still working machines in this resource, then no gridlet will fail, as this

policy does not allocate tightly gridlets to PEs. So, when a machine (and

all its PEs) fails, then that machine becomes no eligible to run more gri-

dlets, but gridlets still run in the other machines. If there are no working

machines in this resource, then all the gridlets will get their status set to

FAILED RESOURCE UNAVAILABLE and sent back to the user.

In the Figure 3, the failed resource has only one machine with one processing

element (PE). So, as there are no working machines in the failed resource, the

behavior shown is that of both allocation policies.

• When the user (GridUserFailure entity) receives the failed gridlets (with the

normal code), he will contact the GIS entity in order to get a list of available

resources, will choose one of them, and will send the failed gridlets to this new

resource. Note that if there are still working machines in the failed resource, then

the user may send the gridlets again to the same resource (step 6).

• When the user receives a gridlet with the special code (

FAILED RESOURCE UNAVAILABLE), he will reschedule the new submission

for a given moment in the future. This moment will be decided based on the

polling time (Tp) of the user. We do this because we want to simulate the polling

mechanism of a real system. In a real system, every Tp seconds, the user would

poll the resources used to run his gridlets. If a resource does not respond to

the poll, then the user would understand that the resource is not available at

this moment, so he would resubmit those gridlets already submitted to the failed

13

resource. So, in the worst case (the resource fails just after responding a poll),

the user would take Tp seconds to discover the failure.

• On the reception of the GRIDRESOURCE RECOVERY event, the GIS will just forward

it to the resource, meaning that the failure is over (step 7).

• When a resouce receives a GRIDRESOURCE RECOVERY event, it just sets all it ma-

chines as working.

• Every time that the GIS receives a GRIDRESOURCE POLLING event, it will poll all

the resources in the list of available resources. Resources where at least one of the

machines are still working will respond to the poll. The resources where all the

machines are out of order will wait for a given time before sending a response with

an special code. This is the way we skip the inability of the GridSim simulator to

deal with entities waiting for an event which never comes. On the reception of the

response, the GIS will remove that resource from the list of available resources.

So the next time an user queries it, the failed resource will not be among the

resources returned to the user. After performing the polling mechanism, the GIS

will schedule another GRIDRESOURCE POLLING event for the future. The polling

mechanism can be seen in the Figure 4.

Once we have expalined in depth the new functionality added to GridSim, we

will present a sample output of the simulator running this functionality.

3.3 Sample Output

In this section, we provide a scenario of the new resource failure functionality. We have

created an experiment based on EU DataGRID Testbed 1, as shown in Figure 5 [7],

which has been used to evaluate data replication strategies in [4].

14

Figure 3: Sequence diagram for a resource failure.

Table 1 summarizes the characteristics of simulated resources, which were ob-

tained from a real LCG testbed [8]. The parameters regarding to a CPU rating is

defined in the form of MIPS (Million Instructions Per Second) as per SPEC (Standard

Performance Evaluation Corporation) benchmark. Moreover, the number of nodes for

each resource have been scaled down by 10, because of memory limitation on the com-

puter we ran the experiments on. The complete experiments would require more than

2GB of memory. Finally, each resource node has four CPUs.

For this experiment, we have five VO domains and each resource belongs to one

of them as shown in Table 1. The VO mapping is done by taking into account a

geographical proximity between the resources.

15

Figure 4: Sequence diagram for the polling mechanism.

For this experiment, we created 100 users and distributed them among the VO

domains, as shown in Table 2. Each user has 10 jobs and each job takes about 10

minutes if it is run on the CERN resource. Each user belongs to two different VOs

and submits jobs to resources from the primary VO. The secondary VO is chosen at

random and it is used only when all of resources from the primary VO have failed.

To simplify the experiment set-up, some parameters are identical for all network

elements, such as the maximum transfer unit (MTU) of links is 1,500 bytes and the

latency is 10 milliseconds.

As mentioned previously, GIS uses a probabilistic distribution on deciding how

16

Resource Name (Location) # Nodes CPU Rating Policy # Users VO

RAL (UK) 41 49,000 Space-Shared 12 2

Imperial College (UK) 52 62,000 Space-Shared 16 2

NorduGrid (Norway) 17 20,000 Space-Shared 4 3

NIKHEF (Netherlands) 18 21,000 Space-Shared 8 3

Lyon (France) 12 14,000 Space-Shared 12 0

CERN (Switzerland) 59 70,000 Space-Shared 24 0

Milano (Italy) 5 70,000 Space-Shared 4 1

Torino (Italy) 2 3,000 Time-Shared 2 1

Rome (Italy) 5 6,000 Space-Shared 4 1

Padova (Italy) 1 1,000 Time-Shared 2 4

Bologna (Italy) 67 80,000 Space-Shared 12 4

Table 1: Resource specifications.

User Location # Users Primary VO Secondary VO

RAL (UK) 12 2 4

Imperial College (UK) 16 2 0

NorduGrid (Norway) 4 3 2

NIKHEF (Netherlands) 8 3 4

Lyon (France) 12 0 1

CERN (Switzerland) 24 0 1

Milano (Italy) 4 1 2

Torino (Italy) 2 1 3

Rome (Italy) 4 1 4

Padova (Italy) 2 4 3

Bologna (Italy) 12 4 0

Table 2: The allocation of VO domains to users.

17

Imperial College

RAL

Lyon

 NorduGrid

NIKHEF

CERN

 Milano

 Torino

Rome

Padova
Bologna

45Mb/s

45Mb/s

100Mb/s

100Mb/s

155Mb/s

10Gb/s

10Gb/s

10Gb/s
10Gb/s

10Gb/s

155Mb/s

10Gb/s

155Mb/s

2.5Gb/s

2.5Gb/s 2.5Gb/s

622Mb/s

155Mb/s

2.5Gb/s

2.5Gb/s

1Gb/s

1Gb/s

2.5Gb/s

Figure 5: EU DataGRID Testbed 1.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 10 100 1000 10000 100000

T
ot

al
 A

va
ila

bi
lit

y
(1

e+
06

 M
IP

S
)

Simulation Time (seconds)

VO_0
VO_1
VO_2
VO_3
VO_4

Figure 6: Total availability of each VO domain.

many resources fail. Therefore, we use a hyperexponential distribution for generating a

failure model, because it is suitable for representing availability of resources in different

18

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25

 100 1000 10000 100000

N
um

be
r

of
 F

ai
le

d
M

ac
hi

ne
s

Simulation Time (seconds)

CERN (VO_0)
Milano (VO_1)

RAL (VO_2)
NorduGrid (VO_3)

Bologna (VO_4)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 J

ob
s

Simulation Time (seconds)

Max. number of jobs

Re−submission of failed job
Succedeed job reception

(a) Period of a resource failure in each VO (b) Time-line of User 0

Figure 7: Time-lines showing the progress of resources and User 0.

computing environments [10]. We chose the mean of this distribution to be a half of

the total CPUs of each VO domain. We assume that each VO contains only one GIS

entity.

Once we have explained the experiment setups used in our simulations, we will

show the simulation results. These results depict that we have been able to efficiently

simulate the failure of computing resources in Grids.

We have modeled the dynamic behavior of the Grid system, as shown in Figure 6.

This figure depicts the total availability for each VO domain varied throughout the

simulation time due to resource failures. VO 0 and VO 1 suffered a big drop compared

to others due to a fact that powerful CPUs suffered a failure.

In Figure 7, we can see a time-line of one resource from each VO, and another

time-line of User 0. These time-lines display more interesting views on both resources

and the user. Figure 7(a) shows the period of a resource failure on each VO. For

simplicity, we assume that failed machines in the same resource have the same start

and finish period. In addition, each resource has given a failure notice only once.

19

VO # CPUs # Failed CPUs # Jobs # Failed Jobs Mean Failure Time

VO 0 71 25 360 219 2.76 hours

VO 1 12 5 100 20 103.36 hours

VO 2 93 24 280 96 5.25 hours

VO 3 35 35 120 120 15.82 hours

VO 4 68 6 140 96 9.5 hours

Table 3: Resource failure statistics.

Figure 7(b) shows an event from User 0 of VO 0. Initially, the user submits 10 jobs

to resources from VO 0. Around 100 seconds of simulation time, a failure is happening

at CERN and the user detects this problem. Unfortunately, one of the failed machines

is running the user’s job. Hence, this job is being migrated to another machine. The

same scenario applies to other four jobs. In the end, all jobs are completed successfully,

where some of them finished at time 600 second and the rests at time 1200 seconds.

The time difference is because the last four jobs were resubmitted to a busy resource,

hence they were enqueued.

Table 3 presents statistics regarding to the number of failed machines, mean

failure time, and how many jobs have failed because of that. For VO 4, there is a big

amount of failed jobs compared to the number of failed machines. This is due to a

failure of the whole resource that belongs to this VO. More precisely, all the machines

in Padova failed, hence all the jobs waiting or being executed in Padova failed also.

Similarly, we can see that on an exact period of time, all NorduGrid and NIKHEF

machines failed in VO 3 (also shown in Figure 6). Hence, users of VO 3 have to submit

all of their affected jobs to their secondary VO. At the end, all jobs were successfully

executed.

20

4 Conclusions

As grid technologies become more widely used, the need to improve the research in

this topic grows as well. Although there are a number of grid simulation tools, none

of them cover one of the main features of a grid system: the variable availability of

resources. In this report we have explained the new functionality added to one of the

most widely used grid simulation tools, GridSim Toolkit.

This new functionality allows researchers to create more real models, which in

turn help them to improve their research in different fields of grid computing, such as

grid scheduling, network QoS, fault tolerance, resource discovery,

Acknowledgements

This work was partially supported by the following projects: Consolider CSD2006-46,

CICYT TIN2006-15516-C04-02, PBC-05-007-01, PBC-05-005-01 and José Castillejo

grant. We would like to thank Anthony Sulistio and all the members of the GRIDS

Laboratory, University of Melbourne, for their valuable help. This work has been

carried out during a research stay at the GRIDS Laboratory, University of Melbourne.

References

[1] OptorSim 2.1: Installation and User Guide, 2006.

[2] The SimGrid Simulation Framework. Web Page, 2006. http://simgrid.gforge.

inria.fr/.

21

[3] MicroGrid. Web Page, 2007. http://www-csag.ucsd.edu/projects/grid/

microgrid.html.

[4] Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P., Stockinger,

K., and Zini, F. Simulation of dynamic grid replication strategies in OptorSim.

In Grid Computing - GRID 2002, Third International Workshop, Baltimore, MD,

USA, November 18, 2002, Proceedings (2002), M. Parashar, Ed., vol. 2536 of

Lecture Notes in Computer Science, Springer, pp. 46–57.

[5] Bell, W. H., et al. Optorsim: A Grid simulator for studying dynamic data

replication strategies. The International Journal of High Performance Computing

Applications 17, 4 (Winter 2003), 403–416.

[6] Buyya, R., and Murshed, M. GridSim: A Toolkit for the Modeling and Simu-

lation of Distributed Resource Management and Scheduling for Grid Computing.

Concurrency and Computation: Practice and Experience (Mayo 2002).

[7] European DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid.

[8] LCG Computing Fabric Area. http://lcg-computing-fabric.web.cern.ch.

[9] Miller, J. A., Nair, R. S., Zhang, Z., and Zhao, H. JSIM: A JAVA-based

simulation and animation environment. In 30th Annual Simulation Symposium

(SS ’97) (1997), IEEE Computer Society, pp. 31–42.

[10] Nurmi, D., Brevik, J., and Wolski, R. Modeling machine availability in

enterprise and wide-area distributed computing environments. In Proceedings of

11th Intl. Euro-Par Conference (2005), vol. 3648 of Lecture Notes in Computer

Science, Springer, pp. 432–441.

[11] Sulistio, A., Poduval, G., Buyya, R., and Tham, C.-K. Constructing a

grid simulation with differentiated network service using GridSim. In 6th Inter-

national Conference on Internet Computing (ICOMP’05) (June 2005).

22

[12] Sulistio, A., Yeo, C. S., and Buyya, R. A taxonomy of computer-based

simulations and its mapping to parallel and distributed systems simulation tools.

Softw, Pract. Exper 34, 7 (2004), 653–673.

23

