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Abstract
Traffic balancing algorithms represent a cost-effective alternative to balance traffic in high

performance interconnection networks. The importance of these algorithms is increasing since
most of the current network technologies for clusters are either based on source routing or
use deterministic routing. In source-routed networks, the host is responsible for selecting the
suitable path among the set of paths provided by the routing algorithm. The selection of an
optimal path that maximizes the channel utilization is not trivial because of the huge amount of
combinations. Traffic balancing algorithms are based on heuristics in order to find an optimal
solution. In this paper, we propose a new methodology based on the use of metaheuristic
algorithms to evaluate the effectiveness of traffic balancing algorithms. Preliminary results
show that the set of paths provided by current traffic balancing algorithms are still far from
an optimized solution. Thus, it is worth continuing to design more efficient traffic balancing
algorithms.

1 Introduction

Clusters of PCs represent a cost-effective alternative to parallel computers. The use of high per-

formance switch-based interconnects, such as Myrinet [2], Gigabit Ethernet [18], and InfiniBand
∗This work was partly supported by the Spanish CICYT under Grant TIC2003-08154-C06 and Junta de Comu-

nidades de Castilla La-Mancha under Grants PBC-02-008 and PBC-02-002.



[1], provides the flexibility, low latency and high bandwidth required in these environments. Of-

ten, the interconnection pattern between switches is defined by the user, which may be irregular.

To manage such an irregularity, generic routing algorithms can be used, such as up*/down* [17],

smart [3], adaptive-trail [13], and minimal adaptive [19]. Up*/down* is the most popular routing

algorithm used in clusters. However, this algorithm imposes a large number of routing restrictions

in order to remove cyclic channel dependencies in the network graph, which prevent most of the

messages from being routed through minimal paths. Unfortunately, this fact has a negative impact

on the traffic balance since it tends to concentrate the traffic in a few channels, which dramatically

limits its performance.

In order to balance the traffic in the network, dynamic or static strategies can be applied. Dy-

namic strategies select the routing paths depending on the network status. This status can be known

either locally (adaptive routing strategies [4],[5],[10]) or globally (source-based routing schemes

[8]). However, current commercial interconnects do not support adaptive routing. In addition,

acquiring global information about the network status can introduce high overhead in the network

due to the generated control traffic. Therefore, dynamic strategies to balance traffic are not suitable

for application to clusters of PCs.

On the other hand, unlike dynamic strategies, static strategies do not require any hardware

support. Thus, they can be applied to any commercial interconnect. These strategies try to achieve

an even routing path distribution among the network channels to maximize the network utilization.

To this end, traffic balancing algorithms can be used. These algorithms focus on selecting only one

path between every source-destination pair, without taking into account the network status. Traffic

balancing algorithms select each routing path among the set of paths provided by the applied

routing algorithm. The use of these algorithms is suitable in networks that either apply source

routing [2] or where the routing tables at switches provide deterministic routing [1]. Moreover,

unlike adaptive routing strategies, traffic balancing algorithms guarantee the message delivery in

order, which is required by many parallel applications.

Traffic balancing algorithms are based on an iterative procedure by which the routing paths

provided by the applied routing algorithm are progressively discarded until only one routing path

remains between each source-destination pair. Different heuristics can be applied to discard routing

paths. The simplest criterion is the random selection. Its main drawback is that it cannot guarantee

an even distribution of routing paths over the network channels. More efficient algorithms have

been proposed in the literature, such as Summatory of Crossing paths [2], Deviation of Crossing



paths [7], and Maximum Crossing path [15].

Given that these algorithms are based on an iterative procedure, it is clear that their effective-

ness will strongly depend on the order in which routing paths are discarded. In this sense, we

wonder whether these algorithms are able to obtain an optimal solution that achieves the highest

performance within the bounds imposed by the applied routing scheme. To answer this question,

we should firstly obtain the optimal solution. To this end, it would be necessary to evaluate all the

possible combinations among the routing paths provided by the applied routing algorithm. How-

ever, this approach is non-viable in terms of computational time due to the huge amount of possible

combinations.

An alternative to the enumeration of all the possible combinations, is the use of a heuristic

algorithm. In this way, we will be sure to obtain a good solution (possibly a local optima) to the

problem in a reasonable time. Concretely, we propose to use metaheuristic algorithms [9] because

they can be applied to a wide set of different optimization problems, requiring few effort to adapt

them to a specific problem. Nowadays, metaheuristics are widely used to solve important practical

combinatorial optimization problems, and so we think that this can be an attractive approach to

tackle with the problem posed in this work.

In this paper, we propose a new methodology to evaluate the effectiveness of traffic balancing

algorithms, which is based on the use of metaheuristic techniques. This evaluation methodology

allows us to know at what extent the performance provided by current traffic balancing algorithms

differs from that provided by the optimal solution.

The rest of this paper is organized as follows. In Section 2 we describe the traffic balanc-

ing algorithm selected in the evaluation of the new methodology. Section 3 briefly describes the

metaheuristics used in this paper. Section 4 describes the methodology followed in the evaluation

and Section 5 shows some preliminary results achieved. And finally, Section 6 provides some

concluding remarks and indications on future research.

2 Computing Routing Tables

In this section we briefly describe the process to compute the routing tables in a interconnection

network given its topology. We can identify three main stages in this process, as can be seen in the

Figure 1:

1. Computing Routing Paths Given a topology of the network the routing algorithm computes

all the shortest possible routing paths between every source-destination pair of nodes.



2. Path Selection Once the routing paths have been computed, the next stage is to select through

the application of a balance routing algorithm only an unique routing path for every source-

destination pair of nodes. The paths selected for every source-destination pair represents

a possible combination of routing paths that tries to achieve the maximum network perfor-

mance.

3. Building Routing Tables Routing tables are build based on the routing path selected for

every source-destination pair of nodes in the previous stage. Depending on the network

technology, routing tables can be source routing or switch-based routing. In source routing

routing tables are allocated in the hosts, and for switch-based routing routing tables are

allocated in every switch in the network.

Network
topology

Computing
routing paths

Path
selection

Building
routing tables

Balance
routing

algorithm

Routing
algorithm

Figure 1: Stages of computing routing tables

Given that the Up*/down* routing algorithm is the most popular routing scheme currently used

in commercial networks, we have selected this routing algorithm for computing the routing tables

in our performance evaluation of the balance routing algorithms.

The Up*/down* routing algorithm avoids deadlocks by restricting routing in such a way that

cyclic channel dependencies are avoided. In order to avoid deadlocks while still allowing all links

to be used, Up*/down* builds an spanning tree and assigns a direction (“up” or “down” ) to each

output port based on the spanning tree. To compute the final paths it uses the following rule: a

legal route must traverse zero or more links in the “up” direction followed by zero or more links in

the “down” direction.

In order to compute the Up*/down* routing tables, different methodologies can be applied.

These methodologies differ in the type of spanning tree to be built. The original methodology is



based on BFS spanning trees, as it was proposed in Autonet [17], whereas an alternative method-

ology is based on DFS spanning trees, as it was proposed in [16].

Indeed, it has been demonstrated in several studies [16, 15, 14] that the DFS methodology

substantially improves the network performance with respect to the BFS methodology. In fact,

the DFS methodology imposes a less number of routing restrictions to avoid deadlocks providing

more minimal paths and a better traffic balance than the BFS one.

On the other hand, we have selected in our evaluation the Maximum Crossing path (MaxCp)

balance routing algorithm [14] which achieves the best performance at a lower computational cost

than others routing algorithms [2, 7, 6], specially in large network size (64 switches). Moreover, the

Up*/down* routing algorithm provides a better scenario to this balance routing algorithm because

the Up*/down* routing devotes a large number of routing paths between every source-destination

pair of nodes leading to an increases in the efficiency achieved by this balance routing algorithm.

In essence, the MaxCp algorithm is based on minimizing certain heuristic cost function, such

as that associated to the routing paths between every pair of nodes according to their crossing path

(channel utilization). Crossing path is defined as the number of routing paths crossing the channel.

This algorithm tries to achieve an uniform channel utilization, avoiding that a few channels

become a bottleneck in the network. For this purpose, the algorithm associates a counter to every

channel in the network. Each counter is initialized to the number of routing paths crossing the

channel, that is, the crossing path. Additionally, a cost function is evaluated for each routing path.

The cost associated to a routing path is computed by adding the crossing path of every channel in

the routing path. The procedure defined below is applied repetitively to the channel with highest

value of counter. In each step, a routing path crossing the channel is selected to be removed if there

is more than one routing path between the source and the destination node of this routing path.

In this way, we prevent the network to become disconnected. When a routing path is removed,

the counters associated with every channel crossed by the path are updated. If there is more than

one routing path able to be removed in a channel, the algorithm will first choose the routing path

whose source and destination hosts have the highest number of routing paths between them. The

algorithm finishes when the number of routing paths between every pair of nodes is reduced down

to the unit.



3 Metaheuristics

As defined in the Metaheuristics Network1 home page, “a metaheuristic is a set of concepts that

can be used to define heuristic methods that can be applied to a wide set of different problems”.

That is, a metaheuristic can be viewed as a general algorithmic framework which allows us to apply

a combinatorial optimization technique to a great variety of problems, with relatively few modifi-

cations when instancing the method to a particular problem. In this work, we have selected two

metaheuristics which belongs to two different approaches: genetic algorithms (from evolutionary

computation) and simulated annealing (from the neighborhood search approach).

3.1 Genetic Algorithms

Genetic algorithms (GAs) ([12], [9], chapter 3) are evolutionary algorithms based on the principles

of natural evolution. GAs try to evolve a population of individuals (potential solutions to the prob-

lem) during the search process. Evolution is based on the application of genetic-based operators as

selection, crossover and mutation to the individuals contained in the population. A GA works in

three main steps:

1. Selection: some individuals are selected from the current population by considering their

fitness (the goodness of the solution they codify).

2. Reproduction: the selected individuals are grouped (married) in pairs and some offsprings

are obtained by crossover, that is, by interchanging genetic material between the parents. For

example, from aaaaaa and bbbbbb we obtain aabbbb and bbaaaa when position two

is selected as the crossover point. After crossover, some individuals are mutated (slightly

changed) in order to introduce some diversity in the search. For example, following our

example, aabbab corresponds to mutate position five of the first offspring.

3. Replacement: The new population/generation is obtained by selecting the best individuals

from the old and new ones.

This process (steps 1 to 3) is repeated until a certain termination condition is achieved. In this

work we use Steady State GAs, a model of GA in which only a pair of individuals is selected

for reproduction in step 1. The good behavior of this model has been largely demonstrated in the

specific literature. Figure 2 shows the pseudo-code corresponding to the particular steady state
1http://www.metaheuristics.org



Create the initial population
Repeat:
Select two father p1 and p1
{h1,h2}= crossing(p1,p2)
Mutate {h1,h2} with probability pm
Add h1 and h2 to the population
Remove the two worst individuals in the population

Until the stopping condition is true
Return the best individual reached

during the course of the execution

Figure 2: Pseudo-code for the steady state algorithm.

algorithm used in this work. Several parameters have to be defined prior, such as the formal

representation of the solution, the operators used, the stopping condition, and so on. Section 3.1

describe in more details the parameters used in this work.

3.2 Simulated annealing

Simulated Annealing (SA) ([11], [9], chapter 10) is probably the oldest metaheuristic known and

has its origin in statistical mechanics. In SA instead of maintaining a population of solutions, only

a solution is considered at each state, being its neighborhood explored at each iteration.

SA behaves as a hill climbing algorithm, that is, given the current solution s, the algorithm

moves to the best solution selected among the neighborhood (N(s)) of s (a neighbor s′ is a solution

obtained from s by making a small change or movement). The key idea in SA is to allow moves

resulting in worse solutions than the current one in order to avoid being trapped in local optima (as

usually happens in hill climbing). To implement this behavior, a parameter T called temperature

is used. Concretely, the probability of accepting a neighbor s′ of s is computed following the

Boltzmann distribution: exp(− f(s′)−f(s)
T

). Therefore, when T is high, the probability of accepting

a worse configuration is also high, but when the value of T decreases, the probability of accepting

a worse solution also decreases. The value of T is decreased/cooled during the search process by

following a cooling schedule. Figure 3 shows the pseudo-code of the cooling-down algorithm,

where V (x) is the set of neighbors of x, and f(.) is the evaluation function.

Like the steady state algorithm described in Section 3.1, the value of several parameters have

to be setup prior the execution. These values are significant because they have a great impact on

the performance of the algorithm. These values are discussed in Section 5.



Set the parameters T and n
Selects the initial solution s0
x =s0
Repeat:
For i=0 to n do

Select x’ from V(x)
If f(x’) > f(x) then x=x’
Otherwise, x=x’ with probability P(x,x’)
T = g(T)

End For
Until the stopping condition is true
Return the best individual reached
during the course of the execution

Figure 3: Pseudo-code for the cooling-down algorithm.

4 The Methodology of Evaluation

The methodology proposed to evaluate the effectiveness of the traffic balancing algorithms is based

on the two metaheuristics previously described. As has been mentioned, the goal of these algo-

rithms is to provide a high quality (the optimal one ideally) solution from a set of possibles config-

urations. In the problem of evaluating the effectiveness of traffic balancing algorithms, the optimal

solution corresponds to the set of paths which achieve the highest performance in the network

when considering only a unique route for every source-destination node pair. We will use the so-

lution found by the metaheuristics to evaluate the effectiveness of the traffic balancing algorithm

described in Section 2.

Below we will specify the parameter choices for both metaheuristic algorithms, but first let us to

introduce two crucial points which are common to them: individual representation and evaluation.

• Individual representation. An individual will be a vector of integers, where each position

corresponds to a pair of (source, destination) nodes, and its value is in the range 2..k, being

k the number of different paths from source to destination. Pairs having only a possible

route between them are not included in the solution. So, the representation length is actually

considerably smaller than the upper bound n(n − 1), with n the number of nodes in the

network.

• Individual evaluation. Due to the large number of individuals to be evaluated during the

search process, the use of a simulator, although very precise, is prohibitive in terms of CPU



time. As an alternative we propose to use a performance metric, which can be easily com-

puted from the routing paths codified by the individual. In our initial experiments we have

tried with several routing metrics, as minimizing the maximum use of a channel, the de-

viation in channels use, and the sum of channels use. Among them, we have selected the

minimization of the deviation in channel use, because it is the one which achieves the results

closer to the simulator use.

4.1 Genetic Algorithm design

In order to completely specify the Steady State GA we have to consider the following parameters:

- Initial Population. Individuals in the initial population are generated at random.

- Selection. We use rank-based selection. That is, individuals are sorted according to its

fitness and each individual receives a probability of selection proportional to its position in

the ranking.

- Crossover operator. Two offsprings are generated by using the classical one-point crossover.

- Mutation operator. Each position of each individual in the population is selected for muta-

tion with a small probability (0.01 or 0.02 in our case).

- Stopping Criterion. The algorithm is allowed to complete a fixed number of generations

which depends on the network size.

4.2 Simulated annealing design

The main point here is to define the neighborhood of a given solution s. In our case, s′ it is said

a neighbor of s if they differ in exactly one position. That is, given s=aaaaaa, then abaaaa or

aaaaba are in N(s), but abaaba is not a neighbor of s. On the other hand, as in our GA design,

the initial solution is randomly generated and a maximum number of iterations is considered as

stopping criterion. The remaining parameters/decisions are:

- Iterations per Temperature. The number of iterations to be carried out before to modify

the temperature is the minimum between 1000 and
∏m

i=1 ki, being m the individual length

and ki the number of different paths between the pair (source-destination) associated with

position i.



- Cooling schedule. The temperature decreases geometrically by using the expression: Ti+1 =

αTi, with α = 0.95.

5 Performance Evaluation

In this section, we evaluate by simulation the performance of the optimal routing path configuration

resulting from applying the metaheuristic algorithm proposed in Section 4 and compare it with that

of the MaxCp traffic balancing algorithm.

We use the up*/down* routing algorithm based on the DFS methodology to compute the rout-

ing tables. To obtain realistic simulation results, we have used timing parameters for the switches

taken from a commercial network. We have selected Myrinet because it is becoming increasingly

popular due to its good performance/cost ratio. Myrinet uses source routing. Packet sizes of 32

and 1024 bytes are used. Also, we assume a uniform distribution of packet destinations.

5.1 Network Model

The network is composed of a set of switches and hosts, all of them interconnected by links.

Irregular network topologies are considered in the evaluation. The topologies have been generated

randomly. We have generated ten different topologies for each network size analyzed. Results in

this paper correspond to the topologies that achieve the average behavior for each network size.

Each switch has 8 ports wherein 4 ports connect to hosts and the remainder connect to other

switches. Network sizes of 8, 16, 32, and 64 switches have been considered in order to evaluate

the influence of the network size on performance.

We assume short LAN cables to interconnect switches and hosts. These cables are 10 meters

long, offer a bandwidth of 16 MB/s, and have a delay of 4.92 ns/m. Flits are one byte wide.

Physical channel is also one flit wide. Transmission of data across channels is pipelined. Hence, a

new flit can be injected into the physical channel every 6.25 ns and there can be a maximum of 8

flits on the link at a given time. A hardware stop and go flow control protocol [2] is used to prevent

packet loss. The first flit latency through the switch is 150 ns.

5.2 Simulation Results

Figures 4, 5, 6, and 7 show the average latency and the throughput versus the injected traffic for

the AOC and ADR schemes in networks sizes of 8, 16, 32, and 64 switches, respectively. As can

be seen, the AOC scheme significantly achieves better performance than the ADR scheme. The



improvements ranged from 10 percent to 15 percent. The explanation of these results is that the

AOC scheme achieves a better traffic balance than the ADR scheme, though both algorithms are

based on the same set of routing paths provided by the routing algorithm.

As the performance of the MaxCp algorithm is higher than that of other existing algorithms,

the results obtained in this evaluation can be generalized to other low-performance algorithms.

These results show that there is still enough margin to improve the performance of traffic balancing

algorithms. Notice that the performance improvements resulting from applying traffic balancing

algorithms are achieved without requiring any hardware support that would increase the system

cost. Therefore, these algorithms represent a cost-effective approach to improve the performance

of current commercial interconnects.
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Figure 4: (a) Average message latency and (b) Throughput versus injected traffic for a network
with 8 switches

6 Conclusions

In this paper, we proposed a new methodology to evaluate the effectiveness of traffic balancing

algorithms. This methodology is based on comparing the performance achieved by the set of paths

selected by applying a traffic balancing algorithm against that achieved by the set of routing paths

selected by using a metaheuristic algorithm.

Preliminary results obtained for a representative traffic balancing algorithm have shown that

its performance is significantly lower than that obtained by using a metaheuristic algorithm. In

particular, a difference in throughput as high as 20 percent is obtained. However, the metaheuristic

algorithms cannot guarantee that in all the configurations they will always provide an optimized
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Figure 5: (a) Average message latency and (b) Throughput versus injected traffic for a network
with 16 switches
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Figure 6: (a) Average message latency and (b) Throughput versus injected traffic for a network
with 32 switches

set of routing paths that achieve the best performance, and can even be detrimental to performance.

These results encourage us to continue to searching for more effective traffic balancing algorithms

suitable to improve the performance of current commercial interconnects.

For future work, we plan to analyze the causes that limit the performance of current traffic

balancing algorithms in order to find new criterions to select the final set of routing paths. The

resulting algorithms must be viable in terms of computational time.
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