
Universidad Castilla-La Man
ha

A publi
ation of theDepartment of Computer S
ien
e
Analysing De�nitional Trees: Looking ofDeterminismbyPas
ual Julián Iranzo and Christian Villamizar L.Te
hni
al Report #DIAB-03-12-2 De
ember 2003

DEPARTAMENTO DE INFORMÁTICAESCUELA POLITÉCNICA SUPERIORUNIVERSIDAD DE CASTILLA-LA MANCHACampus Universitario s/nAlba
ete - 02071 - SpainPhone +34.967.599200, Fax +34.967599224

Analysing De�nitional Trees: Looking forDeterminism1Pas
ual Julián Iranzo and Christian Villamizar LamusDepartamento de Informáti
aUniversidad de Castilla�La Man
haCiudad Real, SpainPas
ual.Julian�u
lm.es
villami�inf-
r.u
lm.esAbstra
t This paper des
ribes how high level implementations of (need-ed) narrowing into Prolog
an be improved by analysing de�nitionaltrees. First, we introdu
e a re�ned representation of de�nitional treesthat handles properly the knowledge about the indu
tive positions ofa pattern. The aim is to take advantage of the new representation ofde�nitional trees to improve the aforementioned kind of implementationsystems. Se
ond, we introdu
e sele
tive unfolding transformations, ondeterminate atom
alls in the Prolog
ode, by examining the existen
eof what we
all �deterministi
 (sub)bran
hes� in a de�nitional tree. Asa result of this analysis, we de�ne some generi
 algorithms that allowus to
ompile a fun
tional logi
 program into a set of Prolog
lauseswhi
h in
reases determinism and in
orporates some re�nements that areobtained by ad ho
 arti�
es in other similar implementations of fun
-tional logi
 languages. We also present and dis
uss the advantages of ourproposals by means of some simple examples.Keywords: Fun
tional logi
 programming, narrowing strategies, imple-mentation of fun
tional logi
 languages, program transformation.1 Introdu
tionFun
tional logi
 programming [14℄ aims to implement programming languagesthat integrate the best features of both fun
tional programming and logi
 pro-gramming. Most of the approa
hes to the integration of fun
tional and logi
languages
onsider term rewriting systems as programs and some narrowingstrategy as
omplete operational me
hanism. Laziness is a valuable feature offun
tional logi
 languages, sin
e it in
reases the expressive power of this kindof languages: it supports
omputations with in�nite data stru
tures and a mod-ular programming style. Among the di�erent lazy narrowing strategies, needednarrowing [7℄ has been postulated optimal from several points of view: i) it is
orre
t and
omplete, with regard to stri
t equations and
onstru
tor substi-tutions answers, for the
lass of indu
tively sequential programs (see, forward,1 Supported by CICYT TIC 2001-2705-C03-01, A

ión Integrada Hispano-ItalianaHI2000-0161, and A

ión Integrada Hispano-Alemana HA2001-0059.

De�nition 2); ii) it
omputes minimal length derivations, if
ommon variablesare shared; and iii) no redundant answers are obtained. Some of these optimal-ity properties have also been established for a broader
lass of term rewritingsystems de�ning non�deterministi
 fun
tions [4℄. Needed narrowing addresses
omputations by means of some stru
tures, namely de�nitional trees [2℄, whi
h
ontain all the information about the program rules. These stru
tures allow usto sele
t a position of the term whi
h is being evaluated and this position pointsout to a redu
ible subterm that is �unavoidable� to redu
e in order to obtain theresult of the
omputation. It is a

epted that the framework for de
larative pro-graming based on non�deterministi
 lazy fun
tions of [20℄ also uses de�nitionaltrees as part of its
omputational me
hanism. In re
ent years, a great e�ort hasbeen done to provide the integrated languages with high level implementationsof this
omputational model into Prolog (see for instan
e [3,9,15,18℄ and [21℄).This paper investigates how an analysis of de�nitional trees
an introdu
e im-provements in the quality of the Prolog
ode generated by these implementationsystems.The paper is organized as follows: Se
tion 2 re
alls some basi
 notions we usein the rest of the se
tions. In Se
tion 3 we des
ribe a re�ned representation ofde�nitional trees and we give an algorithm for their
onstru
tion in the style of[17℄. Se
tion 4 introdu
es two new translation te
hniques: Se
tion 4.1 dis
usseshow to take advantage of the new representation of de�nitional trees to improve(needed) narrowing implementations; Se
tion 4.2 presents an algorithm, guidedby the stru
ture of a de�nitional tree, whi
h is able to produ
e the same e�e
t asif a determinate unfolding transformation was applied on the
ompiled Prolog
ode. Se
tion 5 presents some experiments that show the e�e
tiveness of ourproposals. Se
tion 6 dis
uses the relation of our te
hniques to other resear
h onfun
tional logi
 programming and logi
 programming. Finally, Se
tion 7
ontainsour
on
lusions.2 PreliminariesWe
onsider �rst order expressions or terms built from symbols of the set ofvariables X and the set of fun
tion symbols F in the usual way. The set of termsis denoted by T (F ,X). We sometimes write f/n ∈ F to denote that f is a
n�ary fun
tion symbol. If t is a term di�erent from a variable, Root(t) is thefun
tion symbol heading t, also
alled the root symbol of t. A term is linear ifit does not
ontain multiple o

urren
es of the same variable. Var(o) is the setof variables o

urring in the synta
ti
 obje
t o. We write on for the sequen
e ofobje
ts o1, . . . , on.A substitution σ is a mapping from the set of variables to the set of terms,with �nite domain Dom(σ) = {x ∈ X | σ(x) 6= x}. We denote the identitysubstitution by id. We de�ne the
omposition of two substitutions σ and θ,denoted σ ◦ θ as usual: σ ◦ θ(x) = σ̂(θ(x)), where σ̂ is the extension of σ to thedomain of the terms. A renaming is a substitution ρ su
h that there exists theinverse substitution ρ−1 and ρ ◦ ρ−1 = ρ−1 ◦ ρ = id.3

A term t is more general than s (or s is an instan
e of t), in symbols t ≤ s,if (∃σ) s = σ(t). Two terms t and t′ are variants if there exists a renaming ρsu
h that t′ = ρ(t). We say that t is stri
tly more general than s, denoted t < s,if t ≤ s and t and s are not variants. The quasi�order relation �≤� on terms isoften
alled subsumption order and �<� is
alled stri
t subsumption order.Positions of a term t (also
alled o

urren
es) are represented by sequen
esof natural numbers used to address subterms of t. The
on
atenation of thesequen
es p and w is denoted by p.w. Two positions p and p′ of t are
omparableif (∃w) p′ = p.w or p = p′.w, otherwise are disjoint positions. Given a position
p of t, t|p denotes the subterm of t at position p and t[s]p denotes the result ofrepla
ing the subterm t|p by the term s. Let pn be a sequen
e of disjoint positionsof a term t, t[s1]p1

. . . [sn]pn
denotes the result of simultaneously repla
ing ea
hsubterm t|pi

by the term si, with i ∈ {1, . . . , n}.2.1 Term rewriting systemsWe limit the dis
ussion to un
onditional term rewriting systems1. A rewrite ruleis a pair l → r with l, r ∈ T (F ,X), l 6∈ X , and Var(r) ⊆ Var(l). The terms l and
r are
alled the left�hand side (lhs) and right�hand side (rhs) of the rewrite rule,respe
tively. A term rewriting system (TRS) R is a �nite set of rewrite rules.We are spe
ially interested in TRSs whose asso
iate signature F
an bepartitioned into two disjoint sets F = C ⊎D where D = {Root(l) | (l → r) ∈ R}and C = F \D. Symbols in C are
alled
onstru
tors and symbols in D are
alledde�ned fun
tions or operations. Terms built from symbols of the set of variables
X and the set of
onstru
tors C are
alled
onstru
tor terms. A pattern is a termof the form f(dn) where f/n ∈ D and dn are
onstru
tor terms. A term f(xn),where xn are di�erent variables, is
alled a generi
 pattern. A TRS is said to be
onstru
tor�based (CB) if the lhs of its rules are patterns. For CB TRSs, a term
t is a head normal form (hnf) if t is a variable or Root(t) ∈ C.A TRS is said to be left�linear if for ea
h rule l → r in the TRS, the lhs
l is a linear term. We say that a TRS is non�ambiguous or non�overlapping ifit does not
ontain
riti
al pairs (see [10℄ for a standard de�nition of a
riti
alpair). Left�linear and non�ambiguous TRSs are
alled orthogonal TRSs.Indu
tively sequential TRSs are a proper sub
lass of CB orthogonal TRSs.The de�nition of this
lass of programs make use of the notion of de�nitional tree.For the sake of simpli
ity and be
ause further
ompli
ations are irrelevant for ourstudy, in the following de�nition, we ignore the exempt nodes that appear in theoriginal de�nition of [2℄ and also the or�nodes of [18℄ used in the implementationof Curry [17℄. Note also, that or�nodes lead to parallel de�nitional trees and thusout of the
lass of indu
tively sequential systems.De�nition 1. [Partial de�nitional tree℄Given a CB TRS R, P is a partial de�nitional tree with pattern π if and onlyif one of the following
ases hold:1 This is not a true limitation for the expressiveness of a programming language re-laying on this
lass of term rewriting systems [5℄.4

hhhhhhhh
 AA

f(X1 , X2, X3)

f(a, b, X3) f(c, b, X3)

f(b, a, c)

f(a, X2 , X3) f(b, X2 , X3) f(c, X2 , X3)

f(b, a, X3)Figure1. De�nitional tree for the fun
tion �f�of Example 11. P = rule(π, l → r), where π is a pattern and l → r is a rewrite rule in Rsu
h that π is a variant of l.2. P = branch(π, o,Pk), where π is a pattern, o is a variable position of π(
alled indu
tive position), ck are di�erent
onstru
tors, for some k > 0, andfor all i ∈ {1, . . . , k}, Pi is a partial de�nitional tree with pattern π[ci(xn)]o,where n is the arity of ci and xn are new variables.From a de
larative point of view, a partial de�nitional tree P
an be seen asa set of linear patterns partially ordered by the stri
t subsumption order �<�[4℄. Given a de�ned fun
tion f/n, a de�nitional tree of f is a partial de�nitionaltree whose pattern is a generi
 pattern and its leaves
ontain variants of all therewrite rules de�ning f .Example 1. Given the rules de�ning the fun
tion f/3

R1 : f(a, b, X) → r1, R2 : f(b, a, c) → r2, R3 : f(c, b, X) → r3.a de�nitional tree of f is:
branch(f(X1, X2, X3), 1,

branch(f(a, X2, X3), 2, rule(f(a, b, X3), R1)),
branch(f(b, X2, X3), 2, branch(f(b, a, X3), 2, rule(f(b, a, c), R2))),
branch(f(c, X2, X3), 2, rule(f(c, b, X3), R3)))Note that there
an be more than one de�nitional tree for a de�ned fun
tion. It isoften
onvenient and simpli�es understanding to provide a graphi
 representationof de�nitional trees, where ea
h node is marked with a pattern and the indu
tiveposition in bran
hes is surrounded by a box. Figure 1 illustrates this
on
ept.De�nition 2. [Indu
tively Sequential TRS℄A de�ned fun
tion f is
alled indu
tively sequential if it has a de�nitional tree.A rewrite system R is
alled indu
tively sequential if all its de�ned fun
tions areindu
tively sequential.In this paper we are mainly interested in indu
tively sequential TRSs (or propersub
lasses of them) whi
h are
alled programs .5

2.2 De�nitional trees and Narrowing Implementations into PrologMost of the relevant implementations of fun
tional logi
 languages, whi
h useneeded narrowing as operational me
hanism, are based on the
ompilation of theprograms written in these languages into Prolog [9,15,18,19℄. These implemen-tation systems may be thought as a translation pro
ess that essentially
onsistsin the following:1. An algorithm to transform the program rules in a fun
tional logi
 programinto a set of de�nitional trees (See [18℄ and [17℄ for some of those algorithms).2. An algorithm that takes the de�nitional trees as an input parameter andvisits their nodes, generating a Prolog
lause for ea
h visited node. Sin
ede�nitional trees
ontain all the information about the original program aswell as information to guide the (optimal) pattern mat
hing pro
ess duringthe evaluation of expressions, the set of generated Prolog
lauses is able tosimulate the intended narrowing strategy being implemented.In the
ase of fun
tional logi
 programs with a needed narrowing semanti
s, ageneri
 algorithm for the translation of de�nitional trees into a set of
lauses isgiven in [15℄. When we apply that algorithm to the de�nitional tree of fun
tion
f in Example 1, we obtain the following set of Prolog
lauses:% Clause for the root node: it exploits the first indu
tive positionf(X1, X2, X3, H) :- hnf(X1, HX1), f_1(HX1, X2, X3, H).% Clauses for the remaining nodes:f_1(a, X2, X3, H):- hnf(X2, HX2), f_1_a_2(HX2, X3, H).f_1_a_2(b, X3, H):- hnf(r1, H).f_1(b, X2, X3, H):- hnf(X2, HX2), f_1_b_2(HX2, X3, H).f_1_b_2(a, X3, H):- hnf(X3, HX3), f_1_b_2_a_3(HX3, H).f_1_b_2_a_3(
, H):- hnf(r2, H).f_1(
, X2, X3, H):- hnf(X2, HX2), f_1_
_2(HX2, X3, H).f_1_
_2(b, X3, H):- hnf(r3, H).where hnf(T, H) is a predi
ate that is true when H is the hnf of a term T. Forthis example, the
lauses de�ning the predi
ate hnf are:% Evaluation to head normal form (hnf).hnf(T, T) :- var(T), !.hnf(f(X1, X2, X3), H) :- !, f(X1, X2, X3, H).hnf(T, T). % otherwise the term T is a hnf;The meaning of these set of
lauses is as follows. For evaluating a term t =
f(t1, t2, t3) to a hnf, �rst, it is ne
essary to evaluate (to a hnf) the subtermsof t at the indu
tive positions of the patterns in the de�nitional tree asso
iatedwith f (in the order di
tated by that de�nitional tree � see Figure 1). Hen
e,for our example: we
ompute the hnf of t1 and then the hnf of t2; if b is the hnfof t1 and a is the hnf of t2, we have to
ompute the hnf of t3; if the hnf of t3is c then the hnf of t will be the hnf of r2 else the
omputation fails (see the6

hhhhhhhh
 AA

f(X1, X2, X3)

f(a, b, X3) f(b, a, X3) f(c, b, X3)

f(b, a, c)
Deterministi
(sub)bran
hFigure2. Re�ned de�nitional tree for the fun
tion �f�of Example 1sixth
lause). On the other hand, if the hnf of t1 is a or c it su�
es to evaluate

t2 to a hnf, disregarding t3, in order to obtain the �nal value. This evaluationme
hanism
onforms with the needed narrowing strategy of [7℄, as it has beenformally demonstrated in [1℄.3 A Re�ned Representation of De�nitional TreesAs we have just seen, building de�nitional trees is the �rst step of the
ompilationpro
ess in high level implementations of needed narrowing into Prolog. Therefore,providing a suitable representation stru
ture for the de�nitional trees asso
iatedwith a fun
tional logi
 program may be an important task in order to improvethose systems. In this se
tion we give a re�ned representation of de�nitionaltrees that saves memory allo
ation and is the basis for further improvements.It is noteworthy that the fun
tion f of Example 1 has two de�nitional trees:the one depi
ted in Figure 1 and a se
ond one obtained by exploiting position 2 ofthe generi
 pattern f(X1, X2, X3). Hen
e, this generi
 pattern has two indu
tivepositions. We
an take advantage of this situation if we �simultaneously� exploitthese two positions to obtain the de�nitional tree depi
ted in the Figure 2. Thisnew representation
uts the number of nodes of the de�nitional tree from eightto �ve nodes. Note also that this kind of representation redu
es the number ofpossible de�nitional trees asso
iated with a fun
tion. A
tually, using the newrepresentation, there is only one de�nitional tree for f .The main idea of the re�nement is as follows: when a pattern has severalindu
tive positions, exploit them altogether. Therefore we need a
riterion todete
t indu
tive positions. This
riterion exists and it is based on the
on
eptof uniformly demanded position, whi
h was introdu
ed into the fun
tional logi
setting by J. Moreno-Navarro, and M. Rodríguez-Artalejo et al. (see, for instan
e,[18℄).De�nition 3. [Uniformly demanded position℄Given a pattern π and a TRS R, Let be Rπ = {l → r|(l → r) ∈ R ∧ π ≤ l}. Avariable position p of the pattern π is said to be: (i) demanded by a lhs l of arule in Rπ if Root(l|p) ∈ C. (ii) uniformly demanded by Rπ if p is demanded byall lhs in Rπ. 7

We write UDPos(π) to denote the set of uniformly demanded positions of thepattern π. The following proposition establishes a ne
essary
ondition for a po-sition of a pattern to be an indu
tive position.Proposition 1. Let R be an indu
tively sequential TRS and let π be the patternof a bran
h node of a de�nitional tree P of a fun
tion de�ned in R. If o is anindu
tive position of π then o is uniformly demanded by Rπ.Proof. We pro
eed by
ontradi
tion. Assume o is not uniformly demanded by
Rπ. Hen
e, there must exist some (l → r) ∈ Rπ su
h that Root(l|o) = c ∈ C,and some (l′ → r′) ∈ Rπ su
h that l′|o ∈ X . Sin
e o is the indu
tive positionof the bran
h node whose pattern is π, by de�nition of de�nitional tree, π <
π[c(xn)]o ≤ l and π ≤ l′. Therefore it is impossible to built a partial de�nitionaltree with leaves l and l′ by exploiting the position o, whi
h
ontradi
ts thehypothesis that o is an indu
tive position.The
onverse proposition is more involved but not di�
ult to establish. In thefollowing, given two partial de�nitional trees P1 and P2, we say P1 � P2 if andonly if P1 = P2 or P1 ≺ P2, where P1 ≺ P2 if P1 is a proper subtree of P2.Proposition 2. Let R be an indu
tively sequential TRS. Let P a partial def-initional tree, with pattern π, and o a variable position of π. If o is uniformlydemanded by Rπ then there exists a partial de�nitional tree P ′ � P, with pattern
π′, su
h that o is an indu
tive position of π′.Proof. By stru
tural indu
tion on the shape of P .� Base
ase: P is a leaf.Then, the proposition va
uously holds, sin
e the pattern π of P does nothave uniformly demanded positions (π is a variant of a lhs of a rule R and

Rπ is a singleton
ontaining the rule R).� Indu
tive
ase: P is a bran
h.If o is uniformly demanded by Rπ then, by de�nition, o is a variable positionof π and for ea
h rule (li → ri) ∈ Rπ, Root(li|o) = ci ∈ C. Hen
e, it ispossible to build the set of (
hild) patterns π[ci(xn)]o (where n is the arityof ci and xn are new variables). Therefore, o is a
andidate to be an indu
tiveposition. Two
ases may o

ur:1. In fa
t, o is the indu
tive position of the pattern π and the proof is done,sin
e P ′ = P .2. Assume o′′ 6= o is the indu
tive position of π. Then, by de�nition ofpartial de�nitional tree, there exists a pattern π′′ = π[ci(xn)]o′′ , whi
h isthe pattern of a de�nitional tree P ′′ ≺ P . Clearly, o is a variable positionof π′′ and it is uniformly demanded by the set of rules Rπ′′ ⊆ Rπ .Therefore, by the indu
tive hypothesis, there exists a partial de�nitionaltree P ′ ≺ P ′′, with pattern π′, and o is the indu
tive position of π′. This
on
ludes the proof. 8

Hen
e, the
on
ept of uniformly demanded position and Proposition 1 giveus a synta
ti

riterion to dete
t if a variable position of a pattern is an indu
tiveposition or not and, therefore, a guideline to built a de�nitional tree: (i) Givena bran
h node, sele
t a uniformly demanded position of its pattern; �x it asan indu
tive position of the bran
h node and generate the
orresponding
hildnodes. (ii) If the node doesn't have uniformly demanded positions then there aretwo possibilities: the node is a leaf node, if it is a variant of a lhs of the
onsideredTRS, or it is a �failure� node, and it is impossible to build the de�nitional tree.The following algorithm, in the style of [17℄, uses this s
heme to build a re�nedpartial de�nitional tree rpdt(π,Rπ) for a pattern π and rules Rπ = {l → r |
(l → r) ∈ R ∧ π ≤ l}:1. If UDPos(π) = ∅ and there is only one rule (l → r) ∈ Rπ and a renaming ρsu
h that π = ρ(l):

rpdt(π,Rπ) = rule(π, ρ(l) → ρ(r));2. If UDPos(π) 6= ∅ and for all (ci1 , . . . , cim
) ∈ Cπ, Pi = rpdt(πi,Rπi

) 6= fail:
rpdt(π,Rπ) = branch(π, om,Pk);where om is the sequen
e of uniformly demanded positions in UDPos(π),

Cπ = {(ci1 , . . . , cim
)|(li → ri) ∈ Rπ ∧ Root(li|o1

) = ci1 ∧ . . . ∧Root(li|om
) =

cim
}, k = |Cπ| > 0, πi = π[ci1

(xni1
)]o1

. . . [cim
(xnim

)]om
and xni1

, . . . , xnimare new variables.3. Otherwise, rpdt(π,Rπ) = fail.Given an indu
tively sequential TRS R and a n�ary de�ned fun
tion f in R,the de�nitional tree of f is rdt(f,R) = rpdt(π0,Rπ0
) where π0 = f(xn). Notethat, for an algorithm like the one des
ribed in [17℄ the sele
tion of the indu
tivepositions of the pattern π is non�deterministi
, if UDPos(π) 6= ∅. Therefore, it ispossible to build di�erent de�nitional trees for an indu
tively sequential fun
tion,depending on the indu
tive position whi
h is sele
ted. On the
ontrary, our al-gorithm deterministi
ally produ
es a single de�nitional tree for ea
h indu
tivelysequential fun
tion. Note also that it mat
hes the more informal algorithm thatappears in [17℄ when, for ea
h bran
h node, there is only one indu
tive position.We illustrate the previous algorithm and last remarks by means of a newexample.Example 2. Given the rules de�ning the fun
tion f/2

R1 : f(0, 0) → 0, R2 : f(s(X), 0) → s(0), R3 : f(s(X), s(s(Y))) → f(X, Y).the last algorithm builds the following de�nitional tree for f :
branch(f(X1, X2), (1, 2),

rule(f(0, 0), R1),
rule(f(s(X3), 0), R2),
branch(f(s(X3), s(X4)), (2.1), rule(f(s(X3), s(s(X5))), R3))9

hhhhhhhh
 AA

f(X1, X2)

f(0, 0) f(s(X3), 0) f(s(X3), s(X4))

f(s(X3), s(s(X5)))Figure3. Re�ned de�nitional tree for the fun
tion �f�of Example 2whi
h is depi
ted in Figure 3. The algorithm for generating de�nitional trees of[17℄ may build two de�nitional trees for f (depending on whether position 1 orposition 2 is sele
ted as the indu
tive position of the generi
 pattern f(X1, X2)).Both of these trees have seven nodes, while the new representation of Figure 3redu
es the number of nodes of the de�nitional tree to �ve nodes.As it has been proposed in [9℄, it is possible to obtain a simpler translations
heme of fun
tional logi
 programs into Prolog if de�nitional trees are �rst
ompiled into
ase expressions . That is, fun
tions are de�ned by only one rulewhere the lhs is a generi
 pattern and the rhs
ontains
ase expressions to spe
ifythe pattern mat
hing of a
tual arguments. The use of
ase expressions doesn'tinvalidate our argumentation. Thus, we
an transform the de�nitional tree ofExample 2 in the following
ase expression:
f(X1, X2, X3) = case (X1, X2) of

(0, 0) → 0
(s(X3), 0) → s(0)
(s(X3), s(X4)) → case (X4) of

s(X5) → f(X3, X5)A
ase expression, like this, will be evaluated by redu
ing a tuple of argumentsto their hnf and mat
hing them with one of the patterns of the
ase expression.4 Improving Narrowing Implementations into PrologThis se
tion dis
usses two improvements in the translation of non-stri
t fun
-tional logi
 programs into Prolog whi
h are based on the analysis of de�nitionaltrees. These translation te
hniques
an be applied jointly or separately.4.1 Translation Based on Re�ned De�nitional TreesThe re�ned representation of de�nitional trees introdu
ed in Se
tion 3 is very
lose to the standard representation of de�nitional trees, but it is enough toprovide further improvements in the translation of fun
tional logi
 programsinto Prolog. 10

It is easy to adapt the translation algorithm that appears in [15℄ to use ourre�ned representation of de�nitional trees as input.
Trans(Tn, p) := Trans(T1, p), . . . , T rans(Tn, p);
Trans(rule(π, π → r), p) :=

produceCode :

fp(tm, H) :- hnf(r, H).
Trans(branch(π, (o1, . . . , on), T ′), p) :=

produceCode :

fp(tm, H) :-hnf(X1, Y1), . . ., hnf(Xn, Yn), fp∪{o1,...,on}(t′m, H).
Trans(T ′, p ∪ {o1, . . . , on});where π = f(tm), π|o1

= X1, . . . , π|on
= Xn and π[Y1]o1

. . . [Yn]on
=

f(t′m).Now, ea
h fun
tion f is translated by Trans(T , ∅), where T is a de�nitional treeof f . If we apply this slightly di�erent algorithm to the re�ned de�nitional treeof Figure 2, we obtain the following set of
lauses, where the indu
tive positions
1 and 2 are exploited altogether:% Clause for the root node:f(X1, X2, X3, H) :- hnf(X1, HX1), hnf(X2, HX2), f_1_2(HX1, HX2, X3, H).% Clauses for the remaining nodes:f_1_2(a, b, X3, H):- hnf(r1, H).f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H).f_1_2_b_a(
, H):- hnf(r2, H).f_1_2(
, b, X3, H):- hnf(r3, H).where we have
ut the number of
lauses with regard to the standard represen-tation into Prolog (of the rules de�ning fun
tion f) presented in Se
tion 2.2. Thenumber of
lauses is redu
ed in the same proportion as the number of nodes ofthe standard de�nitional tree for f were
ut. As we are going to show in Se
-tion 5, this re�ned translation te
hnique is able to improve the e�
ien
y of theimplementation system.On the other hand, it is important to note that the kind of improvementswe are mainly studying in this subse
tion
an not be obtained by an unfoldingtransformation pro
ess applied to the set of
lauses produ
ed by the standardalgorithm of [15℄: In fa
t, it is not possible to obtain the previous set of
lausesby an unfolding transformation of the set of
lauses shown in Se
tion 2.2.

11

4.2 Sele
tive Unfolding TransformationsThe analysis of de�nitional trees provides further opportunities for improvingthe translation of indu
tively sequential programs into Prolog. For instan
e, we
an take noti
e that the de�nitional tree of fun
tion f in Example 1 has a�deterministi
� (sub)bran
h, that is, a (sub)bran
h whose nodes have only one
hild (see Figure 2). This knowledge
an be used as a heuristi
 guide for applyingdeterminate unfolding transformation steps sele
tively.Note that, for the example we are
onsidering, the
lauses:f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H). %% (C1)f_1_2_b_a(
, H):- hnf(r2, H). %% (C2)
an be merged into:f_1_2(b, a, X3, H):- hnf(X3,
), hnf(r2, H). %% (C')by applying a safe unfolding transformation in the style of Tamaki and Sato [23℄but restri
ting ourselves to determinate atoms [11,12℄ (i.e., an atom that mat
hesexa
tly one
lause head in the Prolog
ode): we get
lause C1 (the unfolded
lause) and we sele
t the atom f_1_2_b_a(HX3, H) in its body; this atom
allis uni�able with the head of
lause C2 (the unique unfolding
lause for this atom
all), with most general uni�er σ = {HX3/
} (a
tually, a mat
her); Therefore,we
an perform a transformation step where C1 and C2 are instantiated applying
σ, the atom
all is unfolded and, afterwards,
lauses C1 and C2 are repla
ed byC'. This sele
tive unfolding is preferable to a generalized (post�
ompilation) un-folding transformation pro
ess2 whi
h may degrade the e�
ien
y of the
ompiledProlog
ode. Moreover, this sele
tive unfolding transformation
an be easily inte-grated inside the
ompilation pro
edure des
ribed in [15℄. It su�
es to introdu
ean additional
ase in order to treat deterministi
 (sub)bran
hes:

Trans(Tn, p) := Trans(T1, p), . . . , T rans(Tn, p);...
Trans(branch(π, o, T 1), p) :=if T n = branch(πn, on, T ′)

produceCode :

fp(tm, H) :-hnf(X , π1|o), hnf(π1|o1
, π2|o1

), . . ., hnf(πn−1|on−1
, πn|on−1

),hnf(πn|on
, Y), fp∪{o,o1,...,on}(t′m, H).

Trans(T ′, p ∪ {o, o1, . . . , on});else if T n = rule(πn, πn → r)2 That is, a transformation pro
ess where non determinate atom
alls are unfoldedtoo. 12

produceCode :

fp(tm, H) :-hnf(X , π1|o), hnf(π1|o1
, π2|o1

), . . ., hnf(πn−1|on−1
, πn|on−1

),hnf(r, H).where π = f(tm), π|o = X , T 1, . . . , T n is the sequen
e of nodes in thedeterministi
 (sub)bran
h with T i = branch(πi, oi, T i+1), and πn[Y]on
=

f(t′m)....Roughly speaking, the new
ase in the algorithm of [15℄
an be understood asfollows. If there exists a deterministi
 (sub)bran
h visit its nodes in des
endingorder for
ing that the evaluation (to hnf) of the subterms at the indu
tive posi-tion o of a term be the �at
onstru
tor at position o of the
hild node. Pro
eedin this way until: i) a non deterministi
 node is rea
hed; or ii) a leaf node isrea
hed and, in this
ase, evaluate the rhs of the rule to its hnf and stop thetranslation.The last algorithm allows some improvements we have omitted for the sakeof simpli
ity. First, it is possible to eliminate redundant arguments. Se
ond, itis possible to exploit rule nodes (i.e., an atom
all like hnf(r, H)) to performan additional determinate unfolding step3. Having all this in
onsideration, thefollowing example illustrates the algorithm.Example 3. Given the rules de�ning the partial fun
tion even:
R1 : even(0) → true, R2 : even(s(s(X)) → even(X).The de�nitional tree for that fun
tion is:
branch(even(X1), 1,

rule(even(0), R1),
branch(even(s(X2)), 1.1, rule(even(s(s(X3)), R2))))and the Prolog
ode generated by the Trans algorithm is:% Evaluation to head normal form (hnf).hnf(even(X1), H) :- !, even(X1, H).% Clause for the root node: it exploits the first indu
tive positioneven(X1, H) :- hnf(X1, HX1), even_1(HX1, H).even_1(0, true).% Clause for the deterministi
 (sub)bran
h:even_1(s(X2), H) :- hnf(X2, s(X3)), even(X3, H).Note as the determinate
all hnf(even(X3), H) has been unfolded (into the
alleven(X3, H) using the �rst rule for evaluating a hnf).3 These improvements are implemented in the
urry2prolog
ompiler of Pak
s [8℄for the standard
ases. 13

Therefore, our Trans algorithm, guided by the stru
ture of a de�nitional tree,is able to reprodu
e the e�e
t of a post-
ompilation unfolding transformationwhen it is applied sele
tively on determinate atom
alls in the standard
ompiledProlog
ode.5 ExperimentsWe have made some experiments to verify the e�e
tiveness of our proposals. Wehave instrumented the Prolog
ode obtained by the
ompilation of simple Curryprograms by using the
urry2prolog
ompiler of Pak
s [8℄ (an implementationof the multi�paradigm de
larative language Curry [17℄). We have introdu
edour translation te
hniques in the remainder Prolog
ode. For our �rst transla-tion te
hnique, the one using the re�ned representation of de�nitional trees, theresults of the experiments are shown in Table 1. Runtime and memory o

upa-tion were measured on a Sun4 Spar
 ma
hine, running Si
stus v3.8 under SunOSv5.7. The �Speedup�
olumn indi
ates the per
entage of exe
ution time saved byour translation te
hnique. The values shown on that
olumn are the per
entageof the quantity
omputed by the formula (t1 − t2)/t1, where t1 and t2 are theaverage runtimes, for several exe
utions, of the proposed terms (goals) and Pro-log programs obtained when we don't use (t1) and we use (t2) our translationte
hnique. The �G. sta
k Imp.�
olumn reports the improvement of memoryo

upation for the
omputation. We have measured the per
entage of globalsta
k allo
ation. The amount of memory allo
ation measured between ea
h ex-e
ution remains
onstant. Most of the ben
hmark programs are extra
ted fromTable1. Runtime speed up and memory usage improvements for some ben
hmarkprograms and terms.Ben
hmark Term Speedup G. sta
k Imp.family grandfather(_,_) 19.9% 0%geq geq(100000, 99999) 4.6% 16.2%geq geq(99999, 100000) 4.3% 16.2%xor xor(_,_) 18.5% 0%zip zip(L1, L2) 3.6% 5.5%zip3 zip3(L1, L2, L2) 4.5% 10%Average 9.2% 7.9%[17℄ and the standard prelude for Curry programs with slight modi�
ations4.For the ben
hmark programs family and xor we evaluate all out
omes. Thenatural numbers are implemented in Peano notation, using zero and su

 as4 For example, zip (resp. zip3) is adapted for
ombining two (resp. three) lists ofelements of equal length into one list of pairs (resp. triples) of the
orrespondingelements. However, this fun
tion also may be useful in a pra
ti
al
ontext (see [16℄,page 280). 14

onstru
tors of the sort. In the zip and zip3 programs the input terms L1 and
L2 are lists of length 9.Regarding the se
ond translation te
hnique, the one whi
h implements se-le
tive unfolding transformations, for the ben
hmark program of Example 3 weobtain an average speedup of 11.7% and an improvement in memory usage of14.7% for the term (goal) even(16000).Finally, the fun
tion f in Example 2 is a (rather arti�
ial) fun
tion where we
an apply both of our translation te
hniques, allowing us to illustrate their e�e
ta
ting jointly and separately. Table 2 shows some di�erent ben
hmarks, wherewe are
omparing the e�
ien
y of the Prolog
ode generate by the
urry2prolog
ompiler with regard to the Prolog
ode generated by our �rst translation te
h-nique (ref), the Prolog
ode generated by our se
ond translation te
hnique (det)and the Prolog
ode generated when we apply both of them (all). The resultsshow that the e�e
t of our te
hniques is a

umulative.Table2. Runtime speed up and memory usage improvements for the fun
tion f inExample 2.

f(50000, 100000) f(100000, 50000)Ben
hmark Speedup G. sta
k Imp. Speedup G. sta
k Imp.ref 9.5% 11.4% 9.1% 10.8%det 7.7% 11.4% 7.1% 10.8%all 18.9% 22.8% 18.3% 21.6%More detailed information about the experiments and ben
hmark programs
an be found in http://www.inf-
r.u
lm.es/www/pjulian/publi
ations.html.6 Dis
ussion and Related WorkIn this se
tion we dis
uss some important issues and we put them in relation toother resear
h on fun
tional logi
 programming and logi
 programming when itis
onvenient.Elimination of ad ho
 arti�
es. It is noteworthy that, in some
ases, thebene�ts of our �rst translation s
heme are obtained in an ad ho
 way in a
tualneeded narrowing into Prolog implementation systems. For instan
e, the stan-dard de�nition of the stri
t equality used in non�stri
t fun
tional logi
 languagesis [13,21℄:
c == c → true

c(Xn) == c(Yn) → X1 == Y1&& . . .&&Xn == Ynwhere c is a
onstru
tor of arity 0 in the �rst rule and arity n > 0 in the se
ondrule. There is one of these rules for ea
h
onstru
tor that appears in the program15

we are
onsidering. Clearly, the stri
t equality has an asso
iate de�nitional treewhose pattern (X1 == X2) has two uniformly demanded positions (positions 1and 2) and, therefore, it
an be translated using our �rst te
hnique, that produ
esa set of Prolog
lauses similar to the one obtained by the
urry2prolog
ompiler.In fa
t, the
urry2prolog
ompiler translates these rules into the following setof Prolog
lauses5:hnf(A==B,H):-!,seq(A,B,H).seq(A,B,H):-hnf(A,F),hnf(B,G),seq_hnf(F,G,H).seq_hnf(true,true,H):-!,hnf(true,H).seq_hnf(false,false,H):-!,hnf(true,H).seq_hnf(
,
,H):-!,hnf(true,H).seq_hnf(
(A1,...,Z1),
(A2,...,Z2),H):-!,hnf(&&(A1==A1,&&(B1==B2,&&(...,&&(Z1==Z2,true)))),H).Thus, the
urry2prolog
ompiler produ
es an optimal representation of thestri
t equality whi
h is treated as a spe
ial system fun
tion with an ad ho
prede�ned translation into Prolog, instead of using the standard translationalgorithm whi
h is applied for the translation of user de�ned fun
tions.Failing derivations. Our �rst
ontribution, as well as the overall theory ofneeded evaluation, is interesting for
omputations that su

eed. However it isimportant to say that some problems may arise when a
omputation does notterminate or fails. For example, given the (partial) fun
tion
f(a, a) → athe standard
ompilation into Prolog is:f(A,B,C) :- hnf(A,F), f_1(F,B,C).f_1(a,A,B) :- hnf(A,E), f_1_a_2(E,B).f_1_a_2(a,a).while our �rst translation te
hnique produ
es:f(A,B,C) :- hnf(A,F), hnf(B,G), f_1(F,G,C).f_1(a,a,a).Now, if we want to
ompute the term f(b, expensive_term), the standard im-plementation dete
ts the failure after the
omputation of the �rst argument. Onthe other hand, the new implementation
omputes the expensive term (to hnf)for nothing. Of
ourse, the standard implementation has problems too �e.g. ifwe
ompute the term f(expensive_term, b), it also
omputes the expensiveterm (to hnf)�, but it may have a better behavior on this problem. Thus, ina sequential implementation, the performan
e of our �rst translation te
hniquemay be in danger when subterms, at uniformly demanded positions, are evalu-ated (to hnf) jointly with an other subterm whose evaluation (to hnf) produ
es5 Note that, we have simpli�ed the
ode produ
ed by the
urry2prolog
ompiler inorder to in
rease its readability and fa
ilitate the
omparison with our proposal.16

a failure. An alternative to over
ome this pra
ti
al disadvantage is to evaluatethese subterms in parallel, introdu
ing monitoring te
hniques able to dete
t thefailure as soon as possible and then to stop the streams of the
omputation.Clause indexing and dire
t implementation into Prolog. Clause indexingis a te
hnique, used in the implementation of Prolog
ompilers, that aims toredu
e the number of
lauses on whi
h uni�
ation with a goal is performed.In general, indexing te
hniques are based on the inspe
tion of the outermostfun
tion symbol of one or more arguments in a
lause head. If the predi
atesymbol and the respe
tive indexed symbols of the
lause head and the goal
oin
ide, then the
lause is sele
ted as part of the �ltered set . Afterwards, theset of
lauses in the �ltered set (presumably smaller than the original one) isattempted to unify with the goal. More sophisti
ated indexing te
hniques su
has those des
ribed in [22℄ perform indexing on all non variable symbols of a
lause head (losing no signi�
ant stru
tural information). Also, these te
hniquesare able to obtain the uni�er during the indexing pro
ess. Although it seems tohave some similarities between indexing te
hniques and the standard operationalme
hanism of fun
tional logi
 languages, there is a big di�eren
e: in the
ontextof pure logi
 languages terms are dead stru
tures. However, in the
ontext of thiswork, the
on
ept of evaluation strategy relies on the existen
e and manipulationof nested alive terms. The needed narrowing strategy, as de�ned in [7℄, is anappli
ation from terms and partial de�nitional trees to sets of triples (position,rule, substitution), where ea
h triple gives the position of a term, the rule ofthe program and the uni�er substitution (not ne
essarily a most general one)used in a narrowing step. Our work is
on
erned in the optimization of
ertainimplementation te
hniques of needed narrowing into Prolog.On the other hand, it is possible a dire
t representation of a fun
tion intoProlog whi
h is often more e�
ient, sin
e term stru
tures with nested fun
tions
alls are not generated. However, a dire
t implementation
orresponds to a
all-by-value strategy, that la
ks some valuable properties (as the ability of handlein�nite data stru
tures or a good termination behavior) [15℄.Determinate unfolding. Determinate unfolding [11,12℄ has been proposed asa way to ensure that the spe
ialization of a logi
 program will never dupli
ate
omputations. The advantages of determinate unfolding transformations, in the
ontext of the implementation of fun
tional logi
 languages into Prolog, weresuggested in [15℄ and [9℄. They proposed to apply determinate unfolding as apost-
ompilation pro
ess but a
tually, in the
urry2prolog
ompiler, determi-nate unfolding steps are only applied to unfold the atom
alls produ
ed by rulenodes. The novel of our proposal is that it exploits all opportunities for deter-minate unfolding in a systemati
 way and it is embedded inside the
ompilationpro
ess. 17

7 Con
lusionsIn this paper we have introdu
ed a re�ned representation of de�nitional treesthat eliminates the indeterminism in the sele
tion of de�nitional trees in the
ontext of the needed narrowing strategy (A
tually, there is only one re�nedde�nitional tree for ea
h indu
tively sequential fun
tion). We have de�ned twotranslation te
hniques based on the analysis of (re�ned) de�nitional trees. Al-though the results of the experiments se
tion reveal a good behavior of thesetranslation te
hniques, it is di�
ult to evaluate whi
h may be their impa
t overthe whole system, sin
e the improvements appear when we
an dete
t patternsthat have several uniformly demanded positions or the existen
e of determinis-ti
 (sub)bran
hes in a (re�ned) de�nitional tree. Nevertheless, our work showsthat there is a potential for the improvement of a
tual (needed) narrowing im-plementation systems: we obtain valuable improvements of exe
ution time andmemory allo
ation when our translation te
hniques are relevant. For the
ase ofindu
tively sequential fun
tions without the features aforementioned, our trans-lation s
hemes are
onservative and don't produ
e runtime speedups or memoryallo
ation improvements. Although failing derivations are rather a problemati

ase where the performan
e of our �rst translation te
hnique may be in danger,we
an deal with these problem by introdu
ing
on
urrent
omputations, in or-der to guarantee that slowdowns, with regard to standard implementations ofneeded narrowing into Prolog, are not produ
ed. Hen
e, the o

urren
e of sev-eral indu
tive position in a pattern
an be
onsidered as a signal for exploitingimpli
it parallelism.On the other hand, our simple translation te
hniques are able to eliminatesome ad ho
 arti�
es in a
tual implementations of (needed) narrowing into Pro-log, providing a systemati
 and e�
ient translation me
hanism. Moreover, theideas we have just developed
an be introdu
ed with a modest programminge�ort in standard implementations of needed narrowing into Prolog (su
h as thePak
s [8℄ implementation of Curry) and in other implementations based on theuse of de�nitional trees (e.g., the implementation of the fun
tional logi
 language
T OY[19℄), sin
e they don't modify their basi
 stru
tures.A
knowledgementsWe gratefully a
knowledge the anonymous referees for their valuable suggestionsand Sergio Antoy for
larifying us some aspe
ts of the theoreti
al/pra
ti
al di-mension of the failing derivations problem. Also, we thank Ginés Moreno formany useful dis
ussions on the advantages of introdu
ing sele
tive unfoldingtransformations.Referen
es1. M. Alpuente, M. Falas
hi, P. Julián, and G. Vidal. Uniform Lazy Narrowing.Journal of Logi
 and Computation, 13(2):27, Mar
h/April 2003.18

2. S. Antoy. De�nitional trees. In Pro
. of the 3rd Int'l Conferen
e on Algebrai
 andLogi
 Programming, ALP'92, volume 632 of Le
ture Notes in Computer S
ien
e,pages 143�157. Springer-Verlag, Berlin, 1992.3. S. Antoy. Needed Narrowing in Prolog. Te
hni
al Report Te
hni
al Report 96-2,Portland State University, 1996. Full version of extended abstra
t in [6℄.4. S. Antoy. Optimal non-deterministi
 fun
tional logi

omputations. In Pro
. ofthe Int'l Conferen
e on Algebrai
 and Logi
 Programming, ALP'97, volume 1298of Le
ture Notes in Computer S
ien
e, pages 16�30. Springer-Verlag, Berlin, 1997.5. S. Antoy. Constru
tor-based
onditional narrowing. In Pro
. of 3rd Int'l Conf. onPrin
iples and Pra
ti
e of De
larative Programming (PPDP'01). Springer LNCS,2001.6. S. Antoy. Needed Narrowing in Prolog. In Pro
. of the 8th Int'l Symp. on Prog.Lang., Implementations, Logi
s, and Programs, Le
ture Notes in Computer S
i-en
e, pages 473�474. Aa
hen University, Germany, Sept. 1996.7. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, 47(4):776�822, July 2000.8. S. Antoy, M. Engelke, M. Hanus, K. Höppner, J. Koj, P. Niederau, R. Sadre, andF. Steiner. Pak
s 1.5 : The Portland Aa
hen Kiel Curry System User Manual.Te
hni
al Report Version of May, 25, University of Kiel, Germany, 2003. Availablefrom URL: http://www.informatik.uni-kiel.de/ pak
s/.9. S. Antoy and M. Hanus. Compiling multi-paradigm de
larative programs intoprolog. In Pro
. Third International Workshop on Frontiers of Combining Systems,FroCoS 2000, pages 171�185. Springer LNCS 1794, 2000.10. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UniversityPress, 1998.11. J. Gallagher. Tutorial on Spe
ialisation of Logi
 Programs. In Pro
. of PartialEvaluation and Semanti
s-Based Program Manipulation, Copenhagen, Denmark,June 1993, pages 88�98. ACM, New York, 1993.12. J. Gallagher and M. Bruynooghe. Some Low-Level Sour
e Transformations forLogi
 Programs. In M. Bruynooghe, editor, Pro
. of 2nd Workshop on Meta-Programming in Logi
, pages 229�246. Department of Computer S
ien
e, KU Leu-ven, Belgium, 1990.13. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logi
plus Fun
tional Language. Journal of Computer and System S
ien
es, 42:363�377,1991.14. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theoryto Pra
ti
e. Journal of Logi
 Programming, 19&20:583�628, 1994.15. M. Hanus. E�
ient translation of lazy fun
tional logi
 programs into Prolog. InPro
. Fifth International Workshop on Logi
 Program Synthesis and Transforma-tion, LOPSTR'95, pages 252�266. Springer LNCS 1048, 1995.16. M. Hanus and F. Hu
h. An open system to support web-based learning. In Pro-
eedings of the 12th International Workshop on Fun
tional and (Constraint) Logi
Programming, WFLP 2003, Valen
ia, Spain, June 12-13, 2003, pages 269�282.Universidad Polité
ni
a de Valen
ia, 2003.17. M. Hanus (ed.). Curry: An Integrated Fun
tional Logi
 Language. Available athttp://www.informatik.uni-kiel.de/~
urry, 1999.18. R. Loogen, F. López-Fraguas, and M. Rodríguez-Artalejo. A Demand DrivenComputation Strategy for Lazy Narrowing. In J. Penjam and M. Bruynooghe,editors, Pro
. of PLILP'93, Tallinn (Estonia), pages 184�200. Springer LNCS 714,1993. 19

19. F. López-Fraguas and J. Sán
hez-Hernández. TOY: A Multiparadigm De
larativeSystem. In Pro
. of RTA'99, pages 244�247. Springer LNCS 1631, 1999.20. J. G. Moreno, M. H. González, F. López-Fraguas, and M. R. Artalejo. An Ap-proa
h to De
larative Programming Based on a Rewriting Logi
. Journal of Logi
Programming, 1(40):47�87, 1999.21. J. Moreno-Navarro and M. Rodríguez-Artalejo. Logi
 Programming with Fun
tionsand Predi
ates: The language Babel. Journal of Logi
 Programming, 12(3):191�224, 1992.22. R. Ramesh, I. Ramakrishnan, and D.Warren. Automata�Driven Indexing of PrologClauses. Journal of Logi
 Programming, 23(2):151�202, 1995.23. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logi
 Programs. InS. Tärnlund, editor, Pro
. of Se
ond Int'l Conf. on Logi
 Programming, pages 127�139, 1984.

20

