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Analysing De�nitional Trees: Looking forDeterminism1Pasual Julián Iranzo and Christian Villamizar LamusDepartamento de InformátiaUniversidad de Castilla�La ManhaCiudad Real, SpainPasual.Julian�ulm.es villami�inf-r.ulm.esAbstrat This paper desribes how high level implementations of (need-ed) narrowing into Prolog an be improved by analysing de�nitionaltrees. First, we introdue a re�ned representation of de�nitional treesthat handles properly the knowledge about the indutive positions ofa pattern. The aim is to take advantage of the new representation ofde�nitional trees to improve the aforementioned kind of implementationsystems. Seond, we introdue seletive unfolding transformations, ondeterminate atom alls in the Prolog ode, by examining the existeneof what we all �deterministi (sub)branhes� in a de�nitional tree. Asa result of this analysis, we de�ne some generi algorithms that allowus to ompile a funtional logi program into a set of Prolog lauseswhih inreases determinism and inorporates some re�nements that areobtained by ad ho arti�es in other similar implementations of fun-tional logi languages. We also present and disuss the advantages of ourproposals by means of some simple examples.Keywords: Funtional logi programming, narrowing strategies, imple-mentation of funtional logi languages, program transformation.1 IntrodutionFuntional logi programming [14℄ aims to implement programming languagesthat integrate the best features of both funtional programming and logi pro-gramming. Most of the approahes to the integration of funtional and logilanguages onsider term rewriting systems as programs and some narrowingstrategy as omplete operational mehanism. Laziness is a valuable feature offuntional logi languages, sine it inreases the expressive power of this kindof languages: it supports omputations with in�nite data strutures and a mod-ular programming style. Among the di�erent lazy narrowing strategies, needednarrowing [7℄ has been postulated optimal from several points of view: i) it isorret and omplete, with regard to strit equations and onstrutor substi-tutions answers, for the lass of indutively sequential programs (see, forward,1 Supported by CICYT TIC 2001-2705-C03-01, Aión Integrada Hispano-ItalianaHI2000-0161, and Aión Integrada Hispano-Alemana HA2001-0059.



De�nition 2); ii) it omputes minimal length derivations, if ommon variablesare shared; and iii) no redundant answers are obtained. Some of these optimal-ity properties have also been established for a broader lass of term rewritingsystems de�ning non�deterministi funtions [4℄. Needed narrowing addressesomputations by means of some strutures, namely de�nitional trees [2℄, whihontain all the information about the program rules. These strutures allow usto selet a position of the term whih is being evaluated and this position pointsout to a reduible subterm that is �unavoidable� to redue in order to obtain theresult of the omputation. It is aepted that the framework for delarative pro-graming based on non�deterministi lazy funtions of [20℄ also uses de�nitionaltrees as part of its omputational mehanism. In reent years, a great e�ort hasbeen done to provide the integrated languages with high level implementationsof this omputational model into Prolog (see for instane [3,9,15,18℄ and [21℄).This paper investigates how an analysis of de�nitional trees an introdue im-provements in the quality of the Prolog ode generated by these implementationsystems.The paper is organized as follows: Setion 2 realls some basi notions we usein the rest of the setions. In Setion 3 we desribe a re�ned representation ofde�nitional trees and we give an algorithm for their onstrution in the style of[17℄. Setion 4 introdues two new translation tehniques: Setion 4.1 disusseshow to take advantage of the new representation of de�nitional trees to improve(needed) narrowing implementations; Setion 4.2 presents an algorithm, guidedby the struture of a de�nitional tree, whih is able to produe the same e�et asif a determinate unfolding transformation was applied on the ompiled Prologode. Setion 5 presents some experiments that show the e�etiveness of ourproposals. Setion 6 disuses the relation of our tehniques to other researh onfuntional logi programming and logi programming. Finally, Setion 7 ontainsour onlusions.2 PreliminariesWe onsider �rst order expressions or terms built from symbols of the set ofvariables X and the set of funtion symbols F in the usual way. The set of termsis denoted by T (F ,X ). We sometimes write f/n ∈ F to denote that f is a
n�ary funtion symbol. If t is a term di�erent from a variable, Root(t) is thefuntion symbol heading t, also alled the root symbol of t. A term is linear ifit does not ontain multiple ourrenes of the same variable. Var(o) is the setof variables ourring in the syntati objet o. We write on for the sequene ofobjets o1, . . . , on.A substitution σ is a mapping from the set of variables to the set of terms,with �nite domain Dom(σ) = {x ∈ X | σ(x) 6= x}. We denote the identitysubstitution by id. We de�ne the omposition of two substitutions σ and θ,denoted σ ◦ θ as usual: σ ◦ θ(x) = σ̂(θ(x)), where σ̂ is the extension of σ to thedomain of the terms. A renaming is a substitution ρ suh that there exists theinverse substitution ρ−1 and ρ ◦ ρ−1 = ρ−1 ◦ ρ = id.3



A term t is more general than s (or s is an instane of t), in symbols t ≤ s,if (∃σ) s = σ(t). Two terms t and t′ are variants if there exists a renaming ρsuh that t′ = ρ(t). We say that t is stritly more general than s, denoted t < s,if t ≤ s and t and s are not variants. The quasi�order relation �≤� on terms isoften alled subsumption order and �<� is alled strit subsumption order.Positions of a term t (also alled ourrenes) are represented by sequenesof natural numbers used to address subterms of t. The onatenation of thesequenes p and w is denoted by p.w. Two positions p and p′ of t are omparableif (∃w) p′ = p.w or p = p′.w, otherwise are disjoint positions. Given a position
p of t, t|p denotes the subterm of t at position p and t[s]p denotes the result ofreplaing the subterm t|p by the term s. Let pn be a sequene of disjoint positionsof a term t, t[s1]p1

. . . [sn]pn
denotes the result of simultaneously replaing eahsubterm t|pi

by the term si, with i ∈ {1, . . . , n}.2.1 Term rewriting systemsWe limit the disussion to unonditional term rewriting systems1. A rewrite ruleis a pair l → r with l, r ∈ T (F ,X ), l 6∈ X , and Var(r) ⊆ Var(l). The terms l and
r are alled the left�hand side (lhs) and right�hand side (rhs) of the rewrite rule,respetively. A term rewriting system (TRS) R is a �nite set of rewrite rules.We are speially interested in TRSs whose assoiate signature F an bepartitioned into two disjoint sets F = C ⊎D where D = {Root(l) | (l → r) ∈ R}and C = F \D. Symbols in C are alled onstrutors and symbols in D are alledde�ned funtions or operations. Terms built from symbols of the set of variables
X and the set of onstrutors C are alled onstrutor terms. A pattern is a termof the form f(dn) where f/n ∈ D and dn are onstrutor terms. A term f(xn),where xn are di�erent variables, is alled a generi pattern. A TRS is said to beonstrutor�based (CB) if the lhs of its rules are patterns. For CB TRSs, a term
t is a head normal form (hnf) if t is a variable or Root(t) ∈ C.A TRS is said to be left�linear if for eah rule l → r in the TRS, the lhs
l is a linear term. We say that a TRS is non�ambiguous or non�overlapping ifit does not ontain ritial pairs (see [10℄ for a standard de�nition of a ritialpair). Left�linear and non�ambiguous TRSs are alled orthogonal TRSs.Indutively sequential TRSs are a proper sublass of CB orthogonal TRSs.The de�nition of this lass of programs make use of the notion of de�nitional tree.For the sake of simpliity and beause further ompliations are irrelevant for ourstudy, in the following de�nition, we ignore the exempt nodes that appear in theoriginal de�nition of [2℄ and also the or�nodes of [18℄ used in the implementationof Curry [17℄. Note also, that or�nodes lead to parallel de�nitional trees and thusout of the lass of indutively sequential systems.De�nition 1. [Partial de�nitional tree℄Given a CB TRS R, P is a partial de�nitional tree with pattern π if and onlyif one of the following ases hold:1 This is not a true limitation for the expressiveness of a programming language re-laying on this lass of term rewriting systems [5℄.4
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f( X1 , X2, X3)

f(a, b, X3) f(c, b, X3)

f(b, a, c)

f(a, X2 , X3) f(b, X2 , X3) f(c, X2 , X3)

f(b, a, X3 )Figure1. De�nitional tree for the funtion �f�of Example 11. P = rule(π, l → r), where π is a pattern and l → r is a rewrite rule in Rsuh that π is a variant of l.2. P = branch(π, o,Pk), where π is a pattern, o is a variable position of π(alled indutive position), ck are di�erent onstrutors, for some k > 0, andfor all i ∈ {1, . . . , k}, Pi is a partial de�nitional tree with pattern π[ci(xn)]o,where n is the arity of ci and xn are new variables.From a delarative point of view, a partial de�nitional tree P an be seen asa set of linear patterns partially ordered by the strit subsumption order �<�[4℄. Given a de�ned funtion f/n, a de�nitional tree of f is a partial de�nitionaltree whose pattern is a generi pattern and its leaves ontain variants of all therewrite rules de�ning f .Example 1. Given the rules de�ning the funtion f/3

R1 : f(a, b, X) → r1, R2 : f(b, a, c) → r2, R3 : f(c, b, X) → r3.a de�nitional tree of f is:
branch(f(X1, X2, X3), 1,

branch(f(a, X2, X3), 2, rule(f(a, b, X3), R1)),
branch(f(b, X2, X3), 2, branch(f(b, a, X3), 2, rule(f(b, a, c), R2))),
branch(f(c, X2, X3), 2, rule(f(c, b, X3), R3)))Note that there an be more than one de�nitional tree for a de�ned funtion. It isoften onvenient and simpli�es understanding to provide a graphi representationof de�nitional trees, where eah node is marked with a pattern and the indutiveposition in branhes is surrounded by a box. Figure 1 illustrates this onept.De�nition 2. [Indutively Sequential TRS℄A de�ned funtion f is alled indutively sequential if it has a de�nitional tree.A rewrite system R is alled indutively sequential if all its de�ned funtions areindutively sequential.In this paper we are mainly interested in indutively sequential TRSs (or propersublasses of them) whih are alled programs .5



2.2 De�nitional trees and Narrowing Implementations into PrologMost of the relevant implementations of funtional logi languages, whih useneeded narrowing as operational mehanism, are based on the ompilation of theprograms written in these languages into Prolog [9,15,18,19℄. These implemen-tation systems may be thought as a translation proess that essentially onsistsin the following:1. An algorithm to transform the program rules in a funtional logi programinto a set of de�nitional trees (See [18℄ and [17℄ for some of those algorithms).2. An algorithm that takes the de�nitional trees as an input parameter andvisits their nodes, generating a Prolog lause for eah visited node. Sinede�nitional trees ontain all the information about the original program aswell as information to guide the (optimal) pattern mathing proess duringthe evaluation of expressions, the set of generated Prolog lauses is able tosimulate the intended narrowing strategy being implemented.In the ase of funtional logi programs with a needed narrowing semantis, ageneri algorithm for the translation of de�nitional trees into a set of lauses isgiven in [15℄. When we apply that algorithm to the de�nitional tree of funtion
f in Example 1, we obtain the following set of Prolog lauses:% Clause for the root node: it exploits the first indutive positionf(X1, X2, X3, H) :- hnf(X1, HX1), f_1(HX1, X2, X3, H).% Clauses for the remaining nodes:f_1(a, X2, X3, H):- hnf(X2, HX2), f_1_a_2(HX2, X3, H).f_1_a_2(b, X3, H):- hnf(r1, H).f_1(b, X2, X3, H):- hnf(X2, HX2), f_1_b_2(HX2, X3, H).f_1_b_2(a, X3, H):- hnf(X3, HX3), f_1_b_2_a_3(HX3, H).f_1_b_2_a_3(, H):- hnf(r2, H).f_1(, X2, X3, H):- hnf(X2, HX2), f_1__2(HX2, X3, H).f_1__2(b, X3, H):- hnf(r3, H).where hnf(T, H) is a prediate that is true when H is the hnf of a term T. Forthis example, the lauses de�ning the prediate hnf are:% Evaluation to head normal form (hnf).hnf(T, T) :- var(T), !.hnf(f(X1, X2, X3), H) :- !, f(X1, X2, X3, H).hnf(T, T). % otherwise the term T is a hnf;The meaning of these set of lauses is as follows. For evaluating a term t =
f(t1, t2, t3) to a hnf, �rst, it is neessary to evaluate (to a hnf) the subtermsof t at the indutive positions of the patterns in the de�nitional tree assoiatedwith f (in the order ditated by that de�nitional tree � see Figure 1). Hene,for our example: we ompute the hnf of t1 and then the hnf of t2; if b is the hnfof t1 and a is the hnf of t2, we have to ompute the hnf of t3; if the hnf of t3is c then the hnf of t will be the hnf of r2 else the omputation fails (see the6
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f( X1, X2, X3)

f(a, b, X3) f(b, a, X3 ) f(c, b, X3)

f(b, a, c)
Deterministi(sub)branhFigure2. Re�ned de�nitional tree for the funtion �f�of Example 1sixth lause). On the other hand, if the hnf of t1 is a or c it su�es to evaluate

t2 to a hnf, disregarding t3, in order to obtain the �nal value. This evaluationmehanism onforms with the needed narrowing strategy of [7℄, as it has beenformally demonstrated in [1℄.3 A Re�ned Representation of De�nitional TreesAs we have just seen, building de�nitional trees is the �rst step of the ompilationproess in high level implementations of needed narrowing into Prolog. Therefore,providing a suitable representation struture for the de�nitional trees assoiatedwith a funtional logi program may be an important task in order to improvethose systems. In this setion we give a re�ned representation of de�nitionaltrees that saves memory alloation and is the basis for further improvements.It is noteworthy that the funtion f of Example 1 has two de�nitional trees:the one depited in Figure 1 and a seond one obtained by exploiting position 2 ofthe generi pattern f(X1, X2, X3). Hene, this generi pattern has two indutivepositions. We an take advantage of this situation if we �simultaneously� exploitthese two positions to obtain the de�nitional tree depited in the Figure 2. Thisnew representation uts the number of nodes of the de�nitional tree from eightto �ve nodes. Note also that this kind of representation redues the number ofpossible de�nitional trees assoiated with a funtion. Atually, using the newrepresentation, there is only one de�nitional tree for f .The main idea of the re�nement is as follows: when a pattern has severalindutive positions, exploit them altogether. Therefore we need a riterion todetet indutive positions. This riterion exists and it is based on the oneptof uniformly demanded position, whih was introdued into the funtional logisetting by J. Moreno-Navarro, and M. Rodríguez-Artalejo et al. (see, for instane,[18℄).De�nition 3. [Uniformly demanded position℄Given a pattern π and a TRS R, Let be Rπ = {l → r|(l → r) ∈ R ∧ π ≤ l}. Avariable position p of the pattern π is said to be: (i) demanded by a lhs l of arule in Rπ if Root(l|p) ∈ C. (ii) uniformly demanded by Rπ if p is demanded byall lhs in Rπ. 7



We write UDPos(π) to denote the set of uniformly demanded positions of thepattern π. The following proposition establishes a neessary ondition for a po-sition of a pattern to be an indutive position.Proposition 1. Let R be an indutively sequential TRS and let π be the patternof a branh node of a de�nitional tree P of a funtion de�ned in R. If o is anindutive position of π then o is uniformly demanded by Rπ.Proof. We proeed by ontradition. Assume o is not uniformly demanded by
Rπ. Hene, there must exist some (l → r) ∈ Rπ suh that Root(l|o) = c ∈ C,and some (l′ → r′) ∈ Rπ suh that l′|o ∈ X . Sine o is the indutive positionof the branh node whose pattern is π, by de�nition of de�nitional tree, π <
π[c(xn)]o ≤ l and π ≤ l′. Therefore it is impossible to built a partial de�nitionaltree with leaves l and l′ by exploiting the position o, whih ontradits thehypothesis that o is an indutive position.The onverse proposition is more involved but not di�ult to establish. In thefollowing, given two partial de�nitional trees P1 and P2, we say P1 � P2 if andonly if P1 = P2 or P1 ≺ P2, where P1 ≺ P2 if P1 is a proper subtree of P2.Proposition 2. Let R be an indutively sequential TRS. Let P a partial def-initional tree, with pattern π, and o a variable position of π. If o is uniformlydemanded by Rπ then there exists a partial de�nitional tree P ′ � P, with pattern
π′, suh that o is an indutive position of π′.Proof. By strutural indution on the shape of P .� Base ase: P is a leaf.Then, the proposition vauously holds, sine the pattern π of P does nothave uniformly demanded positions (π is a variant of a lhs of a rule R and

Rπ is a singleton ontaining the rule R).� Indutive ase: P is a branh.If o is uniformly demanded by Rπ then, by de�nition, o is a variable positionof π and for eah rule (li → ri) ∈ Rπ, Root(li|o) = ci ∈ C. Hene, it ispossible to build the set of (hild) patterns π[ci(xn)]o (where n is the arityof ci and xn are new variables). Therefore, o is a andidate to be an indutiveposition. Two ases may our:1. In fat, o is the indutive position of the pattern π and the proof is done,sine P ′ = P .2. Assume o′′ 6= o is the indutive position of π. Then, by de�nition ofpartial de�nitional tree, there exists a pattern π′′ = π[ci(xn)]o′′ , whih isthe pattern of a de�nitional tree P ′′ ≺ P . Clearly, o is a variable positionof π′′ and it is uniformly demanded by the set of rules Rπ′′ ⊆ Rπ .Therefore, by the indutive hypothesis, there exists a partial de�nitionaltree P ′ ≺ P ′′, with pattern π′, and o is the indutive position of π′. Thisonludes the proof. 8



Hene, the onept of uniformly demanded position and Proposition 1 giveus a syntati riterion to detet if a variable position of a pattern is an indutiveposition or not and, therefore, a guideline to built a de�nitional tree: (i) Givena branh node, selet a uniformly demanded position of its pattern; �x it asan indutive position of the branh node and generate the orresponding hildnodes. (ii) If the node doesn't have uniformly demanded positions then there aretwo possibilities: the node is a leaf node, if it is a variant of a lhs of the onsideredTRS, or it is a �failure� node, and it is impossible to build the de�nitional tree.The following algorithm, in the style of [17℄, uses this sheme to build a re�nedpartial de�nitional tree rpdt(π,Rπ) for a pattern π and rules Rπ = {l → r |
(l → r) ∈ R ∧ π ≤ l}:1. If UDPos(π) = ∅ and there is only one rule (l → r) ∈ Rπ and a renaming ρsuh that π = ρ(l):

rpdt(π,Rπ) = rule(π, ρ(l) → ρ(r));2. If UDPos(π) 6= ∅ and for all (ci1 , . . . , cim
) ∈ Cπ, Pi = rpdt(πi,Rπi

) 6= fail:
rpdt(π,Rπ) = branch(π, om,Pk);where om is the sequene of uniformly demanded positions in UDPos(π),

Cπ = {(ci1 , . . . , cim
)|(li → ri) ∈ Rπ ∧ Root(li|o1

) = ci1 ∧ . . . ∧Root(li|om
) =

cim
}, k = |Cπ| > 0, πi = π[ci1

(xni1
)]o1

. . . [cim
(xnim

)]om
and xni1

, . . . , xnimare new variables.3. Otherwise, rpdt(π,Rπ) = fail.Given an indutively sequential TRS R and a n�ary de�ned funtion f in R,the de�nitional tree of f is rdt(f,R) = rpdt(π0,Rπ0
) where π0 = f(xn). Notethat, for an algorithm like the one desribed in [17℄ the seletion of the indutivepositions of the pattern π is non�deterministi, if UDPos(π) 6= ∅. Therefore, it ispossible to build di�erent de�nitional trees for an indutively sequential funtion,depending on the indutive position whih is seleted. On the ontrary, our al-gorithm deterministially produes a single de�nitional tree for eah indutivelysequential funtion. Note also that it mathes the more informal algorithm thatappears in [17℄ when, for eah branh node, there is only one indutive position.We illustrate the previous algorithm and last remarks by means of a newexample.Example 2. Given the rules de�ning the funtion f/2

R1 : f(0, 0) → 0, R2 : f(s(X), 0) → s(0), R3 : f(s(X), s(s(Y ))) → f(X, Y ).the last algorithm builds the following de�nitional tree for f :
branch(f(X1, X2), (1, 2),

rule(f(0, 0), R1),
rule(f(s(X3), 0), R2),
branch(f(s(X3), s(X4)), (2.1), rule(f(s(X3), s(s(X5))), R3))9
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f( X1, X2 )

f(0, 0) f(s(X3), 0) f(s(X3), s( X4 ))

f(s(X3), s(s(X5)))Figure3. Re�ned de�nitional tree for the funtion �f�of Example 2whih is depited in Figure 3. The algorithm for generating de�nitional trees of[17℄ may build two de�nitional trees for f (depending on whether position 1 orposition 2 is seleted as the indutive position of the generi pattern f(X1, X2)).Both of these trees have seven nodes, while the new representation of Figure 3redues the number of nodes of the de�nitional tree to �ve nodes.As it has been proposed in [9℄, it is possible to obtain a simpler translationsheme of funtional logi programs into Prolog if de�nitional trees are �rstompiled into ase expressions . That is, funtions are de�ned by only one rulewhere the lhs is a generi pattern and the rhs ontains ase expressions to speifythe pattern mathing of atual arguments. The use of ase expressions doesn'tinvalidate our argumentation. Thus, we an transform the de�nitional tree ofExample 2 in the following ase expression:
f(X1, X2, X3) = case (X1, X2) of

(0, 0) → 0
(s(X3), 0) → s(0)
(s(X3), s(X4)) → case (X4) of

s(X5) → f(X3, X5)A ase expression, like this, will be evaluated by reduing a tuple of argumentsto their hnf and mathing them with one of the patterns of the ase expression.4 Improving Narrowing Implementations into PrologThis setion disusses two improvements in the translation of non-strit fun-tional logi programs into Prolog whih are based on the analysis of de�nitionaltrees. These translation tehniques an be applied jointly or separately.4.1 Translation Based on Re�ned De�nitional TreesThe re�ned representation of de�nitional trees introdued in Setion 3 is verylose to the standard representation of de�nitional trees, but it is enough toprovide further improvements in the translation of funtional logi programsinto Prolog. 10



It is easy to adapt the translation algorithm that appears in [15℄ to use ourre�ned representation of de�nitional trees as input.
Trans(Tn, p) := Trans(T1, p), . . . , T rans(Tn, p);
Trans(rule(π, π → r), p) :=

produceCode :

fp(tm, H) :- hnf(r, H).
Trans(branch(π, (o1, . . . , on), T ′), p) :=

produceCode :

fp(tm, H) :-hnf(X1, Y1), . . ., hnf(Xn, Yn), fp∪{o1,...,on}(t′m, H).
Trans(T ′, p ∪ {o1, . . . , on});where π = f(tm), π|o1

= X1, . . . , π|on
= Xn and π[Y1]o1

. . . [Yn]on
=

f(t′m).Now, eah funtion f is translated by Trans(T , ∅), where T is a de�nitional treeof f . If we apply this slightly di�erent algorithm to the re�ned de�nitional treeof Figure 2, we obtain the following set of lauses, where the indutive positions
1 and 2 are exploited altogether:% Clause for the root node:f(X1, X2, X3, H) :- hnf(X1, HX1), hnf(X2, HX2), f_1_2(HX1, HX2, X3, H).% Clauses for the remaining nodes:f_1_2(a, b, X3, H):- hnf(r1, H).f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H).f_1_2_b_a(, H):- hnf(r2, H).f_1_2(, b, X3, H):- hnf(r3, H).where we have ut the number of lauses with regard to the standard represen-tation into Prolog (of the rules de�ning funtion f) presented in Setion 2.2. Thenumber of lauses is redued in the same proportion as the number of nodes ofthe standard de�nitional tree for f were ut. As we are going to show in Se-tion 5, this re�ned translation tehnique is able to improve the e�ieny of theimplementation system.On the other hand, it is important to note that the kind of improvementswe are mainly studying in this subsetion an not be obtained by an unfoldingtransformation proess applied to the set of lauses produed by the standardalgorithm of [15℄: In fat, it is not possible to obtain the previous set of lausesby an unfolding transformation of the set of lauses shown in Setion 2.2.

11



4.2 Seletive Unfolding TransformationsThe analysis of de�nitional trees provides further opportunities for improvingthe translation of indutively sequential programs into Prolog. For instane, wean take notie that the de�nitional tree of funtion f in Example 1 has a�deterministi� (sub)branh, that is, a (sub)branh whose nodes have only onehild (see Figure 2). This knowledge an be used as a heuristi guide for applyingdeterminate unfolding transformation steps seletively.Note that, for the example we are onsidering, the lauses:f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H). %% (C1)f_1_2_b_a(, H):- hnf(r2, H). %% (C2)an be merged into:f_1_2(b, a, X3, H):- hnf(X3, ), hnf(r2, H). %% (C')by applying a safe unfolding transformation in the style of Tamaki and Sato [23℄but restriting ourselves to determinate atoms [11,12℄ (i.e., an atom that mathesexatly one lause head in the Prolog ode): we get lause C1 (the unfoldedlause) and we selet the atom f_1_2_b_a(HX3, H) in its body; this atom allis uni�able with the head of lause C2 (the unique unfolding lause for this atomall), with most general uni�er σ = {HX3/} (atually, a mather); Therefore,we an perform a transformation step where C1 and C2 are instantiated applying
σ, the atom all is unfolded and, afterwards, lauses C1 and C2 are replaed byC'. This seletive unfolding is preferable to a generalized (post�ompilation) un-folding transformation proess2 whih may degrade the e�ieny of the ompiledProlog ode. Moreover, this seletive unfolding transformation an be easily inte-grated inside the ompilation proedure desribed in [15℄. It su�es to introduean additional ase in order to treat deterministi (sub)branhes:

Trans(Tn, p) := Trans(T1, p), . . . , T rans(Tn, p);...
Trans(branch(π, o, T 1), p) :=if T n = branch(πn, on, T ′)

produceCode :

fp(tm, H) :-hnf(X , π1|o), hnf(π1|o1
, π2|o1

), . . ., hnf(πn−1|on−1
, πn|on−1

),hnf(πn|on
, Y), fp∪{o,o1,...,on}(t′m, H).

Trans(T ′, p ∪ {o, o1, . . . , on});else if T n = rule(πn, πn → r)2 That is, a transformation proess where non determinate atom alls are unfoldedtoo. 12



produceCode :

fp(tm, H) :-hnf(X , π1|o), hnf(π1|o1
, π2|o1

), . . ., hnf(πn−1|on−1
, πn|on−1

),hnf(r, H).where π = f(tm), π|o = X , T 1, . . . , T n is the sequene of nodes in thedeterministi (sub)branh with T i = branch(πi, oi, T i+1), and πn[Y]on
=

f(t′m)....Roughly speaking, the new ase in the algorithm of [15℄ an be understood asfollows. If there exists a deterministi (sub)branh visit its nodes in desendingorder foring that the evaluation (to hnf) of the subterms at the indutive posi-tion o of a term be the �at onstrutor at position o of the hild node. Proeedin this way until: i) a non deterministi node is reahed; or ii) a leaf node isreahed and, in this ase, evaluate the rhs of the rule to its hnf and stop thetranslation.The last algorithm allows some improvements we have omitted for the sakeof simpliity. First, it is possible to eliminate redundant arguments. Seond, itis possible to exploit rule nodes (i.e., an atom all like hnf(r, H)) to performan additional determinate unfolding step3. Having all this in onsideration, thefollowing example illustrates the algorithm.Example 3. Given the rules de�ning the partial funtion even:
R1 : even(0) → true, R2 : even(s(s(X)) → even(X).The de�nitional tree for that funtion is:
branch(even(X1), 1,

rule(even(0), R1),
branch(even(s(X2)), 1.1, rule(even(s(s(X3)), R2))))and the Prolog ode generated by the Trans algorithm is:% Evaluation to head normal form (hnf).hnf(even(X1), H) :- !, even(X1, H).% Clause for the root node: it exploits the first indutive positioneven(X1, H) :- hnf(X1, HX1), even_1(HX1, H).even_1(0, true).% Clause for the deterministi (sub)branh:even_1(s(X2), H) :- hnf(X2, s(X3)), even(X3, H).Note as the determinate all hnf(even(X3), H) has been unfolded (into the alleven(X3, H) using the �rst rule for evaluating a hnf).3 These improvements are implemented in the urry2prolog ompiler of Paks [8℄for the standard ases. 13



Therefore, our Trans algorithm, guided by the struture of a de�nitional tree,is able to reprodue the e�et of a post-ompilation unfolding transformationwhen it is applied seletively on determinate atom alls in the standard ompiledProlog ode.5 ExperimentsWe have made some experiments to verify the e�etiveness of our proposals. Wehave instrumented the Prolog ode obtained by the ompilation of simple Curryprograms by using the urry2prolog ompiler of Paks [8℄ (an implementationof the multi�paradigm delarative language Curry [17℄). We have introduedour translation tehniques in the remainder Prolog ode. For our �rst transla-tion tehnique, the one using the re�ned representation of de�nitional trees, theresults of the experiments are shown in Table 1. Runtime and memory oupa-tion were measured on a Sun4 Spar mahine, running Sistus v3.8 under SunOSv5.7. The �Speedup� olumn indiates the perentage of exeution time saved byour translation tehnique. The values shown on that olumn are the perentageof the quantity omputed by the formula (t1 − t2)/t1, where t1 and t2 are theaverage runtimes, for several exeutions, of the proposed terms (goals) and Pro-log programs obtained when we don't use (t1) and we use (t2) our translationtehnique. The �G. stak Imp.� olumn reports the improvement of memoryoupation for the omputation. We have measured the perentage of globalstak alloation. The amount of memory alloation measured between eah ex-eution remains onstant. Most of the benhmark programs are extrated fromTable1. Runtime speed up and memory usage improvements for some benhmarkprograms and terms.Benhmark Term Speedup G. stak Imp.family grandfather(_,_) 19.9% 0%geq geq(100000, 99999) 4.6% 16.2%geq geq(99999, 100000) 4.3% 16.2%xor xor(_,_) 18.5% 0%zip zip(L1, L2) 3.6% 5.5%zip3 zip3(L1, L2, L2) 4.5% 10%Average 9.2% 7.9%[17℄ and the standard prelude for Curry programs with slight modi�ations4.For the benhmark programs family and xor we evaluate all outomes. Thenatural numbers are implemented in Peano notation, using zero and su as4 For example, zip (resp. zip3) is adapted for ombining two (resp. three) lists ofelements of equal length into one list of pairs (resp. triples) of the orrespondingelements. However, this funtion also may be useful in a pratial ontext (see [16℄,page 280). 14



onstrutors of the sort. In the zip and zip3 programs the input terms L1 and
L2 are lists of length 9.Regarding the seond translation tehnique, the one whih implements se-letive unfolding transformations, for the benhmark program of Example 3 weobtain an average speedup of 11.7% and an improvement in memory usage of14.7% for the term (goal) even(16000).Finally, the funtion f in Example 2 is a (rather arti�ial) funtion where wean apply both of our translation tehniques, allowing us to illustrate their e�etating jointly and separately. Table 2 shows some di�erent benhmarks, wherewe are omparing the e�ieny of the Prolog ode generate by the urry2prologompiler with regard to the Prolog ode generated by our �rst translation teh-nique (ref), the Prolog ode generated by our seond translation tehnique (det)and the Prolog ode generated when we apply both of them (all). The resultsshow that the e�et of our tehniques is aumulative.Table2. Runtime speed up and memory usage improvements for the funtion f inExample 2.

f(50000, 100000) f(100000, 50000)Benhmark Speedup G. stak Imp. Speedup G. stak Imp.ref 9.5% 11.4% 9.1% 10.8%det 7.7% 11.4% 7.1% 10.8%all 18.9% 22.8% 18.3% 21.6%More detailed information about the experiments and benhmark programsan be found in http://www.inf-r.ulm.es/www/pjulian/publiations.html.6 Disussion and Related WorkIn this setion we disuss some important issues and we put them in relation toother researh on funtional logi programming and logi programming when itis onvenient.Elimination of ad ho arti�es. It is noteworthy that, in some ases, thebene�ts of our �rst translation sheme are obtained in an ad ho way in atualneeded narrowing into Prolog implementation systems. For instane, the stan-dard de�nition of the strit equality used in non�strit funtional logi languagesis [13,21℄:
c == c → true

c(Xn) == c(Yn) → X1 == Y1&& . . .&&Xn == Ynwhere c is a onstrutor of arity 0 in the �rst rule and arity n > 0 in the seondrule. There is one of these rules for eah onstrutor that appears in the program15



we are onsidering. Clearly, the strit equality has an assoiate de�nitional treewhose pattern (X1 == X2) has two uniformly demanded positions (positions 1and 2) and, therefore, it an be translated using our �rst tehnique, that produesa set of Prolog lauses similar to the one obtained by the urry2prolog ompiler.In fat, the urry2prolog ompiler translates these rules into the following setof Prolog lauses5:hnf(A==B,H):-!,seq(A,B,H).seq(A,B,H):-hnf(A,F),hnf(B,G),seq_hnf(F,G,H).seq_hnf(true,true,H):-!,hnf(true,H).seq_hnf(false,false,H):-!,hnf(true,H).seq_hnf(,,H):-!,hnf(true,H).seq_hnf((A1,...,Z1),(A2,...,Z2),H):-!,hnf(&&(A1==A1,&&(B1==B2,&&(...,&&(Z1==Z2,true)))),H).Thus, the urry2prolog ompiler produes an optimal representation of thestrit equality whih is treated as a speial system funtion with an ad hoprede�ned translation into Prolog, instead of using the standard translationalgorithm whih is applied for the translation of user de�ned funtions.Failing derivations. Our �rst ontribution, as well as the overall theory ofneeded evaluation, is interesting for omputations that sueed. However it isimportant to say that some problems may arise when a omputation does notterminate or fails. For example, given the (partial) funtion
f(a, a) → athe standard ompilation into Prolog is:f(A,B,C) :- hnf(A,F), f_1(F,B,C).f_1(a,A,B) :- hnf(A,E), f_1_a_2(E,B).f_1_a_2(a,a).while our �rst translation tehnique produes:f(A,B,C) :- hnf(A,F), hnf(B,G), f_1(F,G,C).f_1(a,a,a).Now, if we want to ompute the term f(b, expensive_term), the standard im-plementation detets the failure after the omputation of the �rst argument. Onthe other hand, the new implementation omputes the expensive term (to hnf)for nothing. Of ourse, the standard implementation has problems too �e.g. ifwe ompute the term f(expensive_term, b), it also omputes the expensiveterm (to hnf)�, but it may have a better behavior on this problem. Thus, ina sequential implementation, the performane of our �rst translation tehniquemay be in danger when subterms, at uniformly demanded positions, are evalu-ated (to hnf) jointly with an other subterm whose evaluation (to hnf) produes5 Note that, we have simpli�ed the ode produed by the urry2prolog ompiler inorder to inrease its readability and failitate the omparison with our proposal.16



a failure. An alternative to overome this pratial disadvantage is to evaluatethese subterms in parallel, introduing monitoring tehniques able to detet thefailure as soon as possible and then to stop the streams of the omputation.Clause indexing and diret implementation into Prolog. Clause indexingis a tehnique, used in the implementation of Prolog ompilers, that aims toredue the number of lauses on whih uni�ation with a goal is performed.In general, indexing tehniques are based on the inspetion of the outermostfuntion symbol of one or more arguments in a lause head. If the prediatesymbol and the respetive indexed symbols of the lause head and the goaloinide, then the lause is seleted as part of the �ltered set . Afterwards, theset of lauses in the �ltered set (presumably smaller than the original one) isattempted to unify with the goal. More sophistiated indexing tehniques suhas those desribed in [22℄ perform indexing on all non variable symbols of alause head (losing no signi�ant strutural information). Also, these tehniquesare able to obtain the uni�er during the indexing proess. Although it seems tohave some similarities between indexing tehniques and the standard operationalmehanism of funtional logi languages, there is a big di�erene: in the ontextof pure logi languages terms are dead strutures. However, in the ontext of thiswork, the onept of evaluation strategy relies on the existene and manipulationof nested alive terms. The needed narrowing strategy, as de�ned in [7℄, is anappliation from terms and partial de�nitional trees to sets of triples (position,rule, substitution), where eah triple gives the position of a term, the rule ofthe program and the uni�er substitution (not neessarily a most general one)used in a narrowing step. Our work is onerned in the optimization of ertainimplementation tehniques of needed narrowing into Prolog.On the other hand, it is possible a diret representation of a funtion intoProlog whih is often more e�ient, sine term strutures with nested funtionsalls are not generated. However, a diret implementation orresponds to a all-by-value strategy, that laks some valuable properties (as the ability of handlein�nite data strutures or a good termination behavior) [15℄.Determinate unfolding. Determinate unfolding [11,12℄ has been proposed asa way to ensure that the speialization of a logi program will never dupliateomputations. The advantages of determinate unfolding transformations, in theontext of the implementation of funtional logi languages into Prolog, weresuggested in [15℄ and [9℄. They proposed to apply determinate unfolding as apost-ompilation proess but atually, in the urry2prolog ompiler, determi-nate unfolding steps are only applied to unfold the atom alls produed by rulenodes. The novel of our proposal is that it exploits all opportunities for deter-minate unfolding in a systemati way and it is embedded inside the ompilationproess. 17



7 ConlusionsIn this paper we have introdued a re�ned representation of de�nitional treesthat eliminates the indeterminism in the seletion of de�nitional trees in theontext of the needed narrowing strategy (Atually, there is only one re�nedde�nitional tree for eah indutively sequential funtion). We have de�ned twotranslation tehniques based on the analysis of (re�ned) de�nitional trees. Al-though the results of the experiments setion reveal a good behavior of thesetranslation tehniques, it is di�ult to evaluate whih may be their impat overthe whole system, sine the improvements appear when we an detet patternsthat have several uniformly demanded positions or the existene of determinis-ti (sub)branhes in a (re�ned) de�nitional tree. Nevertheless, our work showsthat there is a potential for the improvement of atual (needed) narrowing im-plementation systems: we obtain valuable improvements of exeution time andmemory alloation when our translation tehniques are relevant. For the ase ofindutively sequential funtions without the features aforementioned, our trans-lation shemes are onservative and don't produe runtime speedups or memoryalloation improvements. Although failing derivations are rather a problematiase where the performane of our �rst translation tehnique may be in danger,we an deal with these problem by introduing onurrent omputations, in or-der to guarantee that slowdowns, with regard to standard implementations ofneeded narrowing into Prolog, are not produed. Hene, the ourrene of sev-eral indutive position in a pattern an be onsidered as a signal for exploitingimpliit parallelism.On the other hand, our simple translation tehniques are able to eliminatesome ad ho arti�es in atual implementations of (needed) narrowing into Pro-log, providing a systemati and e�ient translation mehanism. Moreover, theideas we have just developed an be introdued with a modest programminge�ort in standard implementations of needed narrowing into Prolog (suh as thePaks [8℄ implementation of Curry) and in other implementations based on theuse of de�nitional trees (e.g., the implementation of the funtional logi language
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