
University of Castilla-La Mancha

A publication of the

Department of Computer Science

Switch Scheduling in the Multimedia Router (MMR)

by

M. B. Caminero, F. J. Quiles, J. Duato, S. Yalamanchili, D. Love

Technical Report #DIAB-00-02-10 February 2000

This work is the extended version of the paper accepted for presentation in the IPDPS'2000

Symposium, held in Cancun (Mexico) in May, 2000

J. Duato is with the Dept. of Information Systems and Computer Architecture, Universidad

Polit�ecnica de Valencia, P.O.B. 22012, 46071 - Valencia

S. Yalamanchili and D. Love are with the School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, Georgia 30332-0250, U.S.A.

DEPARTAMENTO DE INFORM�ATICA

ESCUELA POLIT�ECNICA SUPERIOR
UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

1



2



Switch Scheduling in the Multimedia Router (MMR)

M. B. Caminero, F. J. Quiles, J. Duato, S. Yalamanchili, D. Love

Abstract

The primary objective of the Multimedia Router (MMR) project is the design and imple-
mentation of a single-chip router optimized for multimedia applications. The router is tar-
geted for use in cluster and LAN interconnection networks which o�er di�erent constraints
and therefore di�ering router solutions than WANs. This paper describes and evaluates a
switch scheduling algorithm based on a priority biasing scheme for dynamically updating the
priorities of the connections established through the router. Unlike existing schemes that
simply use the age of a it as its priority, the novel feature of the proposed approach is that
the priority is biased using the measured quality of service (QoS) values for the connection.
Furthermore, the structure of the switch scheduling algorithm is motivated by opportunities
for pipelined and concurrent operation so that scheduling decisions could be made at switching
speeds. The performance of two of the many possible biasing functions is evaluated.

1 Introduction

The primary objective of the Multimedia Router (MMR) project is the design and im-

plementation of a single-chip router optimized for multimedia applications and targeted for

use in clusters and LANs. The goal is to provide architectural support to enable a range of

quality of service (QoS) guarantees at latencies comparable to state-of-the-art multiprocessor

cut-through routers. To achieve this goal we must provide solutions to many diÆcult hard-

ware resource management and scheduling problems while constraining required resources

to permit e�ective single-chip implementations. This paper focuses on one speci�c problem,

namely, the ability to make e�ective switch scheduling decisions at router switching speeds.

2 Background and Motivation

The continuing rapid decrease in the cost of both processor and network components has

led to a tighter integration of computation and communication. The result has been an explo-

sion of network-based applications characterized by the processing and delivery of continuous

3



data streams and dynamic media [6, 12] in addition to servicing traditional static data. Nu-

merous examples can be drawn from web-based applications, interactive simulations, gaming,

visualization, virtual meetings, and collaborative design environments. The changing nature

of the workload and cost/performance trade-o�s have prompted the development of a new

generation of scalable media servers structured around networks of workstations (NOWs) in-

terconnected by high-speed system/local area network (SAN/LAN) fabrics. Systems such as

real-time media servers need to service hundreds and, possibly thousands, of clients typically

each with their own distinct quality of service (QoS) requirements, such as packet dropping

vs. reliable message transmission, low latency vs. jitter, or throughput vs. latency. We must

concurrently meet diverse service requirements with the same set of hardware and software

resources.

To meet the requirements of SAN/LAN environments we have proposed the Multimedia

Router (MMR), whose architecture is illustrated in Figure 1. The router is organized around

a synchronously controlled crossbar switch. Messages are partitioned into ow control digits

or its which are quite large: 128-1024 bits. The switch synchronously transmits one it

from each input port containing ready its. During the transmission the next set of its is

scheduled. Synchronous operation simpli�es switch control and increases throughput. The

large it size is a trade-o� between hiding ow control/scheduling delays, and jitter and delay.

In order to guarantee QoS, connections are established before starting data transmission, thus

reserving the required resources.

Connections that are established through the router may deliver constant bit rate (CBR)

or variable bit rate (VBR) traÆc. Each physical link will support on the order of 256 con-

nections, each one having a dedicated virtual channel. Virtual channels are implemented in

interleaved memory banks that support pipelined access to large its eliminating the tradi-

tional virtual channel multiplexors that have been the source of high overhead in previous

generation routers.

The multiplexed crossbar allows a compact implementation, since the silicon area occu-

pied by it remains small. It also facilitates scalability, since the complexity of the crossbar

increases quadratically with the number of physical links, instead of with the number of vir-

tual channels. Also, scalability is feasible because the bu�er requirements increase linearly

with the number of virtual channels. Up to an 8 � 8 MMR implementation is feasible by

using current VLSI technology. The interested reader is referred to [7] for a more detailed

4



description of the MMR architecture and design trade-o�s.

Link bandwidth is measured in it cycles/sec. A it cycle or slot is the time required to

transmit a it through the internal crossbar or through a link. Slots are grouped into frames.

The number of slots in a frame is an integer multiple of the number of virtual channels per

link.

A network-wide admission control protocol establishes connections through a router if the

bandwidth required for the connection (expressed as a number of slots/frame) is available

on the requested output link. Such a request corresponds to a CBR connection. VBR

connections must specify both a nominal and peak burst bandwidth, and the admission

control protocol di�ers slightly. A scheduling decision is made every it cycle: an input

virtual channel must be selected from each input port and the crossbar synchronously set to

connect input ports to output ports. Some connections may be infeasible if multiple input

ports request a connection to the same output port. Once a set of conict-free connections

have been established through the switch, its are synchronously transmitted to the output

ports. A point of terminology: we use the term link scheduling to refer to the selection

of a virtual channel on a physical input link. Switch scheduling refers to the problem of

matching input ports with requested output ports in a conict-free manner. Note that we

refer to input virtual channels rather than virtual connections. This is because while some

virtual channels may be allocated to virtual connections, others may be serving best-e�ort

or control messages. However, from the switch scheduling perspective, they are all treated

equivalently.

The main distinguishing features of the MMR can be found in [7]. This paper describes the

switch scheduling algorithm proposed for the MMR. The switch scheduling challenge is to

compute switch settings to establish connections between input and output ports at speeds

comparable to the time to transfer a it through the switch. Targeting 1.24 Gbps links and

1024-bit it sizes, the crossbar must be capable of computing switch settings at a rate of one

every 825.6 ns. In this paper we propose a partitioning of switch scheduling algorithms into

a basic set of decisions and de�ne policies for each of those decisions. The partitioning is

motivated by the need for concurrency and pipelining in the scheduler implementation. The

design priority is to develop switch scheduling algorithms that are very fast and amenable for

single-chip implementation. The hypothesis is that simple, fast algorithms are preferable to

optimal algorithms or algorithms that can �nd maximal input/output matchings but which

5



cannot be implemented in a single it cycle nor eÆciently pipelined, since any improvements

in switch throughput would be likely overshadowed by the lengthening of the it cycle time.

At the heart of the proposed scheduling algorithm is a dynamic priority update scheme

which is referred to as priority biasing [5, 9, 11]. The novel feature of the proposed approach

is that the biasing functions modify the it priority as a function of the measured QoS

on a connection. Thus, the rate at which the priority of a it increases at any point in

time is determined by the relationship between the requested QoS and measured QoS. The

performance of two new biasing functions based on this approach are presented at the end

of this paper.

3 Priority Biasing

The key idea within the scheduler is the algorithm used to update the priorities of the its

at the head of the input queues. The it priority is updated as a function of the QoS that a it

has experienced up to that point in time relative to the QoS requested by the corresponding

connection. Such an update operation has been referred to as priority biasing [5, 9, 11] since

the priority value is biased by the relative degradation of its service. The biasing operation

couples the e�ect of the scheduler (e.g., queuing delay) with the QoS demand (e.g., jitter

bound). This distinguishes this approach from priority update mechanisms such as age

counters that do not distinguish connections based on their QoS requirements.

For example, consider only constant bit rate (CBR) connections where QoS is directly

related to the bandwidth allocated to a connection. The priority of a it can be computed as

the ratio of the queuing delay to the connection's inter-arrival time. Increasing queuing delay

increases its priority in successive scheduling cycles. However, the rate at which the priority

increases depends on the bandwidth of the connection. Such a priority biasing mechanism

couples the ongoing e�ect of the switch scheduler (queuing delay) with a measure of the

demands made by the application (connection bandwidth). As the negative impact of the

switch scheduler grows so does the priority, e�ectively \biasing it" with time. Thus, di�erent

connections are biased at di�erent rates, i.e., higher speed connections are biased faster.

Generalizing this approach we hope to be able to e�ectively accommodate QoS guarantees

across heterogeneous streams, i.e., distinct QoS metrics across multiple streams through a

switch.

The �rst biasing function we propose is referred to as Inter-Arrival Based Priority (IABP).

6



The priority of the head it in an input queue is computed as the ratio of the queuing delay

and the connection's inter-arrival time. The rate at which the priority of a it increases

depends on the bandwidth of the connection. IABP couples the ongoing e�ect of the switch

scheduler (queuing delay) with a measure of the demands made by the application (con-

nection bandwidth). For example, consider two its, one each from a low speed (64 Kbps)

and high speed (55 Mbps) connection, respectively. If they both experience the same delay

through the switch, say, 1 microsec, this delay is much greater percentage of the inter-arrival

time on the high-speed connection and as a result has a much higher impact on the connec-

tion's QoS statistics. Biasing based on IABP increases the priority of a it on the higher

speed connection at a much faster rate.

A second biasing function is Jitter-Based Priority (JBP) where the priority of a it is

computed as the ratio of the it jitter1 plus the accumulated jitter, and the connection's

inter-arrival time. We compute the accumulated jitter as the sum of all the successive it

delay di�erences. The idea is to have successive its on a connection experience the same

service time and thereby minimize jitter. This approach reduces the priority of a it if

it is \early". A it is early if it has experienced a smaller queuing delay than the average

queueing delay from its parent connection. An early it will have a low priority, thus delaying

its scheduling so that it can \age" longer. If the it has experienced an equal or longer delay

than its parent connection's average, it will increase its priority at a rate that depends on the

bandwidth requirements of the connection. In both cases, the priority is biased. When a it

is transferred over the crossbar, its delay through the switch is recorded and the accumulated

jitter for its parent connection is updated.

Finally, in addition to how the priority of a it is computed, we have the question of when

the priority is computed. For example, the priorities of the head its in all input queues

can be recomputed every it cycle. Alternatively, they may be updated periodically or in

an event-driven manner, for example, when a it arrives at a queue or when a it leaves

the queue. These alternative approaches may signi�cantly reduce the amount of hardware

required to update priorities for all the virtual channels in real time. We do not address this

problem in depth in this paper but assume that it priorities are recomputed every it cycle.

This will enable us to assess the performance limits of priority biasing.

With priorities updated as described in this section, the following section discusses the

1Flit jitter is equal to the queuing delay for the current it minus the queuing delay for the previous it

7



structure of the switch scheduler. This structure is motivated by the need for concurrent

and pipelined operation to keep the switch scheduler operating at link speeds.

4 Scheduler Implementation

The MMR has a link scheduler associated with each input link and a single switch scheduler

(see Figure 1) Each link scheduler provides a set of requests for output ports to the switch

scheduler. The switch scheduling problem is one of matching input ports to output ports to

maximize switch utilization and the QoS across connections. A common approach towards

generating a switch setting is the use of iterative matching algorithms [1]. However, such

solutions with iterative ow of control between input and output ports are not amenable

to high-speed hardware implementations. We are interested in implementations that are

amenable to pipelining and parallelism and with a feed forward ow of control information.

To do so, the switch scheduling functionality is partitioned into a sequence of basic decisions:

candidate selection (performed by link schedulers), ordering, and arbitration. The scheduler

implementation can be pipelined at the level of these functions.

4.1 Candidate Selection

A candidate on an input port is de�ned as the next it in a virtual channel that is ready

to be scheduled to an output port. Each link scheduler will produce a short list of candidates

from the virtual channels on that link and record them in the input port candidate vector.

Each entry in the vector records the scheduling data for the corresponding it. Typically this

is at least the output port and the priority value. Figure 2 shows a typical input candidate

vector. The priority value shown here is the bandwidth of the connection expressed in Mbps.

This does not correspond to the way priorities are actually encoded. The destination is the

crossbar output port.

Candidate selection is based on the priority value and can be done in parallel by link

schedulers. Based on this criterion anywhere from 1 to N candidates are selected from each

input port for an N�N switch (assuming that there exist active connections in all the ports).

The candidates are ordered according to priority value and the position of a candidate on

this order is the level of the candidate. Thus, the highest priority it at an input port is a

level 1 candidate at that port, the next highest priority it a level 2 candidate, and so on.

Candidate vectors are then forwarded to the switch scheduler.

8



Following candidate selection, the results are recorded in a selection matrix which is a

matrix that is used to record the output port requests from all input ports. An example of a

selection matrix is shown in Figure 3. The matrix has column dimension equal to the number

of input ports, and row dimension equal to the product of the number of output ports and

the number of candidates at each input port (each input port is assumed to provide the

same number of candidates, if available). The columns are labeled with the corresponding

input port, and the rows are labeled with output ports. The �rst N rows record the highest

priority candidates from each input. For example, entry (i; j) is set if the highest priority

it from input j requests output i. The next N rows in the matrix record the level two

candidates from each input port, and so on. For example, in Figure 3 we see that there are

two candidate its in row 0 - in column 1 and in column 3. This corresponds to the highest

priority connections from input ports 1 and 3 having its destined for output port 0. In row

7, we see that input ports 0 and 2 have its destined for output port 3 denoting that the

second level candidates from input ports 0 and 2 are destined for output port 3. Input ports

1 and 3 provided a single candidate. This indicates that there were no more its ready for

scheduling at those ports.

From the selection matrix the switch scheduler creates a conict vector. This is the number

of non-null entries in each row. The conict vector identi�es the number of conicts for an

output port. Figure 4 shows the conict vector corresponding to the matrix in Figure 3.

Note that the conicts are naturally grouped by priority level.

4.2 Port Ordering

Two critical decisions that must now be made by the switch scheduler are the order in

which output ports must be examined to resolve port conicts and the arbitration policy.

The former is important because when an input port is matched to an output port, it drops

requests for all other candidates from this input port. This may change the conicts at other

ports. As a result, the order in which ports are considered can a�ect the number of input

port requests that can be satis�ed, and thus, switch utilization. This decision is captured

in the ordering function. The ordering function proposed and evaluated here selects output

ports �rst by level and then in increasing order of conict within a level. Ties are broken

by randomly selecting one of the ports. The rationale is that ports with the most conicts

should be matched last since those ports have the most opportunities to be matched to an

9



input port. If this ordering function was applied to Figure 4, we would �rst consider conicts

among level 1 candidates (highest priority candidates) from all inputs. Output ports 1 and

2 would be selected �rst and assigned to input ports 2 and 0, respectively. Then output port

0 would be considered and it would be necessary to arbitrate between competing requests

from input ports 1 and 3. Thus, we cannot fully utilize the switch bandwidth using only

level one candidates. The algorithm now moves to level 2 candidates to try to �ll in any

remaining \holes" in the next it cycle. This process is repeated for all candidates. A larger

number of candidates clearly increases the probability of fully utilizing the switch but with

increased implementation complexity.

4.3 Arbitration

Arbitration at an output port is captured in the arbitration function. Arbitration is simply

a matter of picking the highest priority it where priorities are computed and updated as

described in Section 3.

5 Example

Figure 5 shows an example selection matrix derived from a 4 � 4 switch with two levels

of candidates per input port. Each matrix entry in the �gure contains the bandwidth re-

quirements for the corresponding connection. Fixed priority will be used in this example,

where the priority is determined by the inter-arrival times of the connections. The ordering

function selects output ports in increasing order of conict. Since both ports 0 and 2 have

the same degree of conict, one is randomly selected. This selection is implemented using

a free running counter to implement a random number. Let us assume that port 0 is con-

sidered �rst. The �rst invocation of the ordering function returns 0 as the port for which

arbitration is required. Since there is a conict at port 0, the arbitration function will be

invoked and it will return input port 1 (55 > 24). Therefore, input port 1 will be assigned

to output 0 for the next it cycle. Now that output port 0 is assigned, the selection matrix

must be updated. The column corresponding to input port 1 must be re-initialized to 0. Any

candidate from another input port with output port 0 as a destination must also be removed

from further consideration by updating the matrix, including candidates with a di�erent

level. Once the matrix is updated, the conict vector must be recomputed. The updated

data structures are shown on the left side of Figure 6 (assigned output ports are marked with

10



an X in the �gure). The next invocation of the ordering function returns output port 2. The

arbitration function returns input port 0 (55 > 12). Input port 0 is assigned to output port

2 and the data structures are updated. The state of the matrix and conict vector after this

iteration is shown on the right side of Figure 6. If a single level of candidates was considered,

switch scheduling would �nish at this point and two output ports would remain unassigned.

Now, output port 1 is arbitrated for next followed by output port 3. The results of these

arbitrations are shown in Figure 7.

6 Performance Evaluation

In this section some results showing the performance obtained by the IABP and JBP

scheduling algorithms are presented. Simulations of a 4 � 4 router have been carried out.

There are 256 virtual channels per physical link. Flit size is 1024 bits. Physical link band-

width is 1.24 Gbps, and links are 16-bit wide. Thus, the router takes 825.6 nanoseconds to

transmit a it. This is also the time available to compute the link and switch scheduling.

Simulations have been run for all the possible number of candidate levels, ranging from 1 to

4, to check their e�ect on performance.

Workload is composed of combinations of three di�erent types of CBR connections, which

represent di�erent amounts of bandwidth requirements: 0.064 Mbps (IAT2 = 16250 mi-

crosecs), 1.54 Mbps (IAT = 675.33 microsecs) and 55 Mbps (IAT = 18.92 microsecs). In

this way, we can check the behavior of the proposed algorithms on low, medium, and high

bandwidth consuming connections. Workload level is computed as the percentage of the

physical link bandwidth �lled with connections.

First of all, the average crossbar utilization was measured. The results are presented in

Figure 8. For the IABP algorithm, it can be seen that if the number of candidate levels

is increased, crossbar utilization improves. However, as the number of candidate levels

increases, diminishing returns are obtained. For example, the maximum utilization reached

by the crossbar with two candidate levels at saturation is around 77% of link bandwidth.

However, the router is only able to reach almost 90% utilization if four candidate levels

are considered. If only one candidate level is considered, the router can only reach an

utilization of 70%. On the other hand, the JBP algorithm enters saturation at around 70 %

of workload, regardless the number of candidate levels (except for a single candidate). For

2Inter-Arrival Time

11



workloads greater than 72 %, the average crossbar utilization drops heavily, indicating that

the JBP algorithm cannot e�ectively solve output contention.

But in order to provide QoS guarantees to the applications, we need to know not only the

amount of data the router is able to forward, but also the QoS provided to each connection.

For this reason, it delay, distribution of it delay, and jitter were measured. In Figure 9,

average it delays for the three di�erent types of connections and the two scheduling algo-

rithms are presented for those levels of workload which are close to saturation. Note that

the workload consists of a mix of connections with di�erent bandwidth requirements but we

present results for each set of connections separately. For the sake of clarity, the delay results

obtained for one level of candidates and IABP are not presented, since they are rather high

even for workload levels of around 50%. It becomes clear that the IABP algorithm needs

more than one level of candidates to work properly.

First, let us consider the IABP algorithm. The shape of the three plots is quite similar.

One can notice that delay improves when the number of candidate levels is increased, as well

as throughput. Below saturation, delay improvement is more noticeable for the connections

with low bandwidth requirements. This behavior is due to the fact that, as the number of

candidate levels is increased, more matchings between input and output ports are obtained,

and because of the way priorities work, the additional matchings from every additional level of

candidates will likely schedule its from the lowest bandwidth connections. The improvement

in terms of throughput is specially noticeable for the 55 Mbps connections and 4 levels of

candidates. By comparing the plots for connections with di�erent bandwidth requirements,

it can be clearly seen that the improvement in throughput for high bandwidth connections

is achieved at the expense of not servicing the other connections. This explains the higher

crossbar utilization achieved by IABP with respect to JBP (see Figure 8). Clearly, the router

should not work beyond saturation because the lowest bandwidth consuming connections are

not serviced at all. The di�erent time scales in the plots are also remarkable. Delays for the

55 Mbps connections (IAT = 18.92 microsecs) range between 2 and 40 microseconds, while

the 0.064 Mbps connections (IAT = 16250 microsecs) experience delays on the order of a

couple of hundreds of microseconds. This reects the di�erent QoS received by the di�erent

types of connections, according to their requirements. Finally, these plots show that the

IABP algorithm is able to deliver QoS to the less bandwidth consuming connections only for

workloads not greater than 70%-80%, depending on the number of candidate levels used.

12



Regarding the JBP algorithm, the plots show that the increase in the number of candidates

has little e�ect on the delays experienced by the its, for all the types of connections.

This is very interesting, since the implementation of the algorithm can be much simpler by

considering less levels of candidates, without losing QoS. Notice also that, in this case, all

the connections receive similar QoS (the time scales for all the plots are the same). This

might not be desirable, because the less bandwidth consuming connections have less strict

delay requirements, and the algorithm is delivering them more QoS than required. Despite

this fact, the higher bandwidth consuming connections still receive the requested QoS and

forward all their its in time, experiencing a delay similar to the one for the IABP algorithm.

However, JBP saturates at a slightly lower workload than IABP when using more than two

candidate levels.

As a conclusion, both the IABP and the JBP algorithms are able to satisfy the QoS re-

quirements of all the types of connections within similar workload levels. However, the IABP

algorithm favors the higher bandwidth consuming connections, while the JBP algorithm fa-

vors the less bandwidth consuming connections. Note that although the IABP algorithm is

able to reach an utilization of 80% for two levels of candidates, and even nearly 90% if more

levels of candidates are considered, the delays obtained by the lower bandwidth connections

at those workloads are extremely high.

In order to get more information about the distribution of it delay, the percentage of

its whose delays are lower than a set of thresholds have been computed, for some workload

levels below and close to saturation. This gives an idea of the percentage of its that will

meet a given deadline. Data were obtained for all the possible levels of candidates, from

one to four. The thresholds were di�erent for each type of connection, and were related to

their inter-arrival time (IAT). They were set to 2� IAT , IAT , IAT=2, IAT=4, IAT=8, and

IAT=16. Recall the di�erent IAT for every type of connection: 16250 microsecs for the 0.064

Mbps connections, 675.33 microsecs for the 1.54 Mbps connections, and 18.92 microsecs for

the 55 Mbps connections. Therefore, thresholds become tighter as bandwidth requirements

increase. Results are presented in Figure 10 for the IABP algorithm, and in Figure 11 for

the JBP algorithm.

The plots for the IABP algorithm con�rm the inuence of the number of candidate levels

used on the percentage of its that meet their deadline. This is more noticeable as the

connection requirements increase, because their deadlines are also tighter. We will need at

13



least two levels of candidates in order to be able to guarantee the required QoS, and even three

levels of candidates are needed when the workload is 75%. The plots for the JBP algorithm

also show that two levels of candidates are required to guarantee QoS. Furthermore, an

increase in the number of levels of candidates does not have a signi�cant impact on it delay

distribution.

In order to summarize, the maximum workload for which the number of its whose delay

is lower than the IAT is 99 % of the emitted its is shown in Table 1 for both scheduling

algorithms. It can be clearly seen that the throughput reached by the IABP algorithm

while still providing QoS to all the connections is higher than the one achieved by the JBP

algorithm.

Most important of all, both scheduling algorithms are able to guarantee QoS to all the

its when the router is working below saturation, it deadlines are equal to or higher than

IAT, and two or more levels of candidates are used.

Finally, average it jitter has been measured. Results are plotted in Figure 12. As can

be seen, the magnitude of jitter is the same as the delay corresponding to the same type of

connection and scheduling algorithm. Thus, the JBP algorithm provides far less variation in

latency than IABP for the low bandwidth consuming connections, and values in the same

order of magnitude for the most bandwidth consuming ones.

7 Conclusions and Future Work

The Multimedia Router project arises as a response to the increasing need for QoS guar-

antees within local environments. The purpose of the MMR project is not only satisfying

this need for QoS, but also to achieve it with a single-chip switching element that provides

latencies similar to those obtained by the cut-through routers used in multicomputers and

high-performance LAN/SAN.

The link and switch scheduling algorithms are key elements within the design of the router.

In this paper, a new algorithm suitable for high-speed hardware implementation has been

presented. This new algorithm introduces the concept of \biased priority", which relates

the QoS received by a it with the QoS required by the connection in order to prioritize it

transmission.

Two di�erent biasing functions are proposed and evaluated: Inter-Arrival Based Priority

and Jitter Based Priority. Both of them are able to achieve high link utilizations, while still

14



guaranteeing QoS to the connections. IABP makes more di�erences in the QoS delivered

to the di�erent types of connections, while JBP treats all the types of connections equally.

Also IABP is more heavily inuenced by the number of candidate levels than JBP.

As future work, the adaptation of the proposed scheduling algorithm in order to be used

with VBR traÆc has to be carried out, as well as its evaluation with mixed (CBR+VBR)

traÆc.

Finally, best-e�ort traÆc has to be included in the priority scheme in such a way that

it does not interfere with the QoS provided to the multimedia ows, while avoiding its

starvation.

Acknowledgement

We would like to thank Dr. Luis Orozco-Barbosa, from the University of Ottawa, his useful

comments which have helped to considerably improve the quality of this paper.

15



References

[1] T. E. Anderson et al, \High speed switch scheduling for local area networks," Technical Report

SRC research report 99, DEC. Also as ACM Transactions on Computer Systems, vol. 11, no.

4, November, 1993.

[2] S. Balakrishnan and F. �Ozg�uner, \A priority-based ow control mechanism to support real-

time traÆc in pipelined direct networks," Proceedings of the 1996 International Conference

on Parallel Processing, vol. I, pp. 120{127, August 1996.

[3] N. J. Boden, et al., \Myrinet - A gigabit per second local area network," IEEE Micro, pp. 29{

36, February 1995.

[4] J. Carbonaro and F. Verhoorn, \Cavallino: The teraops router and NIC," Proceedings of Hot

Interconnects Symposium IV, August 1996.

[5] A. Chien, J.H. Kim, \Approaches to Quality of Service in High Performance Networks,"

Proceedings of the Workshop on Parallel Computer Routing and Communication, Lecture

Notes in Computer Science, Springer-Verlag, pp.1-19, June 1997.

[6] K. Dienfendor�, P. Dubey, \How multimedia workloads will change processor design," IEEE

Computer, vol. 30, no. 9, pp.43-45, September 1997.

[7] J. Duato, S. Yalamanchili, M.B. Caminero, D. Love, and F.J. Quiles, \MMR: A high-

performance multimedia router. Architecture and design trade-o�s," Proceedings of the 5th

Symposium on High Performance Computer Architecture (HPCA-5), pp. 300-309, January

1999.

[8] M. Galles, \Scalable pipelined interconnect for distributed endpoint routing: The SPIDER

chip," Proceedings of Hot Interconnects Symposium, August 1996.

[9] D. Garcia, D. Watson, \ServerNet II," Proceedings of the Workshop on Parallel Computer

Routing and Communication, pp. 119-136, June 1996.

[10] M. G. H. Katevenis, et al., \ATLAS I: A single-chip ATM switch for NOWs," Proceedings

of the Workshop on Communications and Architectural Support for Network-based Parallel

Computing, February 1997.

16



[11] J.H. Kim, \Bandwidth and latency guarantees in low-cost, high-performance networks," Ph.

D. Thesis, Department of Computer Sciences, University of Illinois at Urbana-Champaign,

1997.

[12] C.E. Kozyrakis, D. Patterson, \A new direction for computer architecture research," IEEE

Computer, vol.31, no. 11, pp. 24-32, November 1998.

[13] M. Prycker, Asynchronous transfer mode: solution for broadband ISDN, Ellis Horwood Lim-

ited, Chichester, West Susex, PO191EB, England, 1991.

[14] J. Rexford, J. Hall and K. G. Shin, \A Router Architecture for Real-Time Point-to-Point

Networks," Proceedings of the International Symposium on Computer Architecture, May 1996.

[15] D. Stiliadis, A. Varma, \Providing bandwidth guarantees in an input-bu�ered crossbar

switch," Proceedings IEEE INFOCOM, 1995.

17



Appendix: Figures and Tables

Switch

Routing and
Arbitration Unit

Phit Buffers

VCM+LS

VCM+LS

VCM+LS

VCM+LS

Switch Scheduler

Ph
ys

ic
al

 I
np

ut
 L

in
ks

Ph
ys

ic
al

 O
ut

pu
t L

in
ks

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

Phit Buffers

VCM - Virtual Channel Memory

LS - Link Scheduler

Figure 1. Multimedia Router (MMR) architecture

18



Dest 0

Priority 1.54

Dest 1 Dest 3 Dest 3

Priority 32Priority 55 Priority 12

Figure 2. An example candidate vector

0

1

2

3

0

1

2

3

FLIT

FLIT

FLIT FLIT

C
andidates
L

evel 1
C

andidates
L

evel 2

Input Ports

0 1 2 3

FLITFLIT

O
ut

pu
t 

P
or

ts

Figure 3. An example selection matrix

0

1

2

3

0

1

2

3

FLIT

FLIT

2

1

1

0

0

0

0

2

O
ut

pu
t 

P
or

ts
C

onflict V
ector

Input Ports

0 1 2 3

FLITFLIT

FLITFLIT

Figure 4. An example conflict vector

19



0

1

2

3

0

1

2

3

Input Ports

0 1 2 3

2

0

2

0

1

1

0

2

O
ut

pu
t 

P
or

ts
C

onflict V
ector

24 Mbps

55 Mbps

55 Mbps

12 Mbps

64 Mbps

20 Mbps 10 Mbps

5 Mbps

Figure 5. Selection matrix for the example

0

1

2

3

0

1

2

3

Input Ports

0 1 2 3

0

0

2

0

0

1

0

1

O
ut

pu
t 

P
or

ts

C
onflict V

ector
55 Mbps

X

12 Mbps

10 Mbps

5 Mbps

0

1

2

3

0

1

2

3

Input Ports

0 1 2 3

0

0

0

0

0

1

0

1

O
ut

pu
t 

P
or

ts

C
onflict V

ector

X

X

10 Mbps

5 Mbps

Figure 6. Selection matrix after arbitration for output ports 0 and 2

0

1

2

3

0

1

2

3

Input Ports

0 1 2 3

0

0

0

0

0

0

0

1

O
ut

pu
t 

P
or

ts

C
onflict V

ector

X

X

10 Mbps

X

0

1

2

3

0

1

2

3

Input Ports

0 1 2 3

0

0

0

0

0

0

0

0

O
ut

pu
t 

P
or

ts

C
onflict V

ector

X

X

X

X

Figure 7. Selection matrix after arbitration for output ports 1 and 3

20



50

55

60

65

70

75

80

85

90

95

50 55 60 65 70 75 80 85 90 95

U
til

iz
at

io
n 

(%
)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(a) IABP algorithm

50

55

60

65

70

75

80

85

90

95

50 55 60 65 70 75 80 85 90 95

U
til

iz
at

io
n 

(%
)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(b) JBP algorithm

Figure 8. Average crossbar utilization

21



IABP algorithm JBP algorithm

50

100

150

200

250

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

c)

Offered load (%)

2 candidates
3 candidates
4 candidates

2

4

6

8

10

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(a) 0.064 Mbps connections (IAT = 16250 microsecs)

25

50

75

100

125

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

c)

Offered load (%)

2 candidates
3 candidates
4 candidates

2

4

6

8

10

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(b) 1.54 Mbps connections (IAT = 675.33 microsecs)

4

8

12

16

20

24

28

32

36

40

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

c)

Offered load (%)

2 candidates
3 candidates
4 candidates

2

4

6

8

10

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(c) 55 Mbps connections (IAT = 18.92 microsecs)

Figure 9. Average flit delay

22



0.064 Mbps connections 1.54 Mbps connections 55 Mbps connections

IAT = 16250 microsecs IAT = 675.33 microsecs IAT = 18.92 microsecs

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

(a) Workload = 60.953 %

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

(b) Workload = 71.974 %

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83
N

um
be

r 
of

 fl
its

 (
%

)
Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

(c) Workload = 75.281 %

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

2 candidates
3 candidates
4 candidates

(d) Workload = 80.515 %

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

2 candidates
3 candidates
4 candidates

(e) Workload = 81.057 %

Figure 10. Distribution of flit delay for different workload levels and different types of connec-

tions, for the IABP algorithm 23



0.064 Mbps connections 1.54 Mbps connections 55 Mbps connections

IAT = 16250 microsecs IAT = 675.33 microsecs IAT = 18.92 microsecs

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

(a) Workload = 60.953 %

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

(b) Workload = 67.100 %

0

10

20

30

40

50

60

70

80

90

100

1016 2031 4062 8125 16250 32500

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

42 84 168 338 675 1350

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

0

10

20

30

40

50

60

70

80

90

100

1.18 2.36 4.73 9.46 18.92 37.83

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

1 candidate
2 candidates
3 candidates
4 candidates

(c) Workload = 71.974 %

Figure 11. Distribution of flit delay for different workload levels and different types of connec-

tions, for the JBP algorithm

24



IABP algorithm JBP algorithm

50

100

150

200

250

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Offered load (%)

2 candidates
3 candidates
4 candidates

2

4

6

8

10

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(a) 0.064 Mbps connections (IAT = 16250 microsecs)

25

50

75

100

125

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Offered load (%)

2 candidates
3 candidates
4 candidates

2

4

6

8

10

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(b) 1.54 Mbps connections (IAT = 675.33 microsecs)

0.5

1

1.5

2

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Offered load (%)

2 candidates
3 candidates
4 candidates

2

4

6

8

10

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Offered load (%)

1 candidate
2 candidates
3 candidates
4 candidates

(c) 55 Mbps connections (IAT = 18.92 microsecs)

Figure 12. Average flit jitter

25



1 cand 2 cand 3 cand 4 cand

IABP 50.828 % 75.281 % 80.515 % 81.057 %

JBP 50.828 % 60.953 % 60.953 % 60.953 %

Table 1. Maximum wokloads with QoS guarantees: the 99% of the transmitted flits experience

delays lower than the IAT of their connection

26


