
FORMAL VERIFICATION OF TLS HANDSHAKE AND 

EXTENSIONS FOR WIRELESS NETWORKS 

Llanos Tobarra, Diego Cazorla, Fernando Cuartero and Gregorio Díaz 
Departamento de Sistemas  Informáticos. EPSA. Universidad de Castilla-La Mancha 

Av. Campus Universitario s/n. 02071. Albacete 

{mtobarra,dcazorla,fernando,gregorio}@info-ab.uclm.es

ABSTRACT 

Transport Layer Security (TLS) is a security protocol widely used in e-commerce in recent years. This protocol has been 

extended in order to deal with clients connecting from mobile devices (PDAs, cellular phones) through a wireless 

network. The main goal of this paper is  to prove, using model checking techniques, that TLS Handshake and its wireless 

extensions are secure enough to ensure that a client and a server are able to exchange secret data in a secure way when 

they communicate over a non trusted wireless network.   

KEYWORDS

Evaluation and Assessment, Security, Wireless Applications, E-commerce Theory and Practice 

1. INTRODUCTION

Security has become one of the most important topics in the Internet in recent years. The quick development 

of e-commerce, that needs the exchange of sensitive information (credit card numbers, account numbers, …), 

has given great importance to the study of communication protocols that allow the exchange of  secret data 

between two or more agents in a non trusted environment.    

Moreover, the quick development of wireless technologies is leading us to a scenario in which more and 

more people will be using  mobile devices (PDAs, cellular phones, notebooks) in order to access services in 

the world wide web. Thus, security over (wired and wireless) networks is becoming nowadays one of the 

most important issues in e-commerce.  

Several general purpose cryptographic protocols have been developed in order to guarantee integrity, 

reliability and authentication. In particular, wireless networks add some constraints to these security 

properties. Wireless clients usually have less memory, they cannot perform complex operations and some 

technologies have a limited bandwidth. Thus,  security protocols must be adapted to these restrictions.  

One of the most popular security protocols used in e-commerce is Transport Layer Security (TLS) 

(Dierks et al,1999), a standard protocol considered as the new version of the well known Secure Sockets 

Layer protocol (SSL) (Freier et al,1996). TLS was mainly developed in order to give the customers  

confidence in their interactions with on-line shops, electronic banks, etc, when they access these services 

from their desktop computers. Nevertheless, some extensions have been defined in order to give the same 

protection against attackers when these customers use their mobile devices.   

In parallel to the development of communication and security protocols, some analysis techniques have 

also been developed in order to verify that these protocols work as they are supposed to, and they do not have 

bugs that allow intruders to hear or alter the information. One of the most promising techniques in this line is 

model checking. Model checking (Clarke et al,1999) is a formal methods based technique for verifying finite 

state concurrent systems that has been implemented in several tools. One of the main advantages of this 

technique is that model checking is automatic and allows us to know whether a system works properly or not. 

In case the system does not work as expected, the model checking tool gives us a trace that leads to the 

source of error.      

IADIS International Conference Applied Computing 2006

57



In this paper we present a formal verification of the TLS Handshake protocol and its extensions for 

wireless networks using the Casper/FDR2  toolbox (G.Lowe; 1998 and manual FDR2). Casper is a compiler 

that accepts a syntax very similar to the syntax used to specify protocols, and translates a model into CSP 

(C.A.R. Hoare, 1985) code which is verified using the model checker FDR2. Casper/FDR2 has been used 

successfully to verify several security protocols, and we consider it is also appropriate for the verification of 

TLS and extensions.   

In literature we have found several papers that deal with the TLS protocol. In G. Díaz et al. (2004) a 

formal specification and analysis of TLS using UPPAAL is presented. Nevertheless, only functional 

properties are considered and no security properties are taken  into account. In L. C. Paulson (2003) an 

inductive analysis of TLS has been performed using the theorem prover Isabelle. In both cases, wireless 

extensions have not been taken into account.  

Other papers deal with the analysis of the SSL protocol. In J.C. Mitchell et al. (1998) SSL Handshake is 

analyzed using a general purpose finite-state enumeration tool called Mur . The tool Mur  (Dill, 1996; Dill 

et al.;1992 ) was designed for hardware verification and related analysis, but has also been used to analyze 

some security protocols (J.C. Mitchell et al.; 1997). Finally, in D. Wagner et al. (1996) an informal analysis 

of SSL Handshake and SSL Record is presented. This analysis explores several possible attacks on the SSL 

protocol and also gives several ways in which the robustness of the SSL protocols can be improved.  

Therefore, as far as we know, this is the first paper that deals with the formal verification of TLS and its 

extensions for wireless networks.    

The paper is organized as follows. In Section 2 TLS handshake and the general mechanism in order to 

extend its functionality is presented. In Section 3 basic TLS Handshake is verified. In Section 4 three 

wireless networks related extensions are verified: URL certificate, trusted CA, and request  of server 

certificate status. Finally in Section 5 we give our conclusions and some lines of  future work.   

2. TRANSPORT LAYER SECURITY 

TLS is a layered protocol which was developed by the Internet Engineering Task Force (IETF) in 1999 

(Dierks et al,1999). The main goal of TLS is providing a secure connection between two communicating 

applications. It is a protocol based on SSL (Freier et al;1996), but there are enough differences between them 

in order to be considered as different protocols.  

TLS is composed of four subprotocols: Handshake, which allows two agents to establish a session; 

Record, which exchanges application data; Alert, which reports about errors in the session; and Change 
Cipher Spec, which copies the negotiated settings to the actual settings. In this paper we will focus on TLS 

Handshake. 

2.1 TLS Handshake 

TLS Handshake negotiates the elements that configure a session between a client and a server: a session 

identifier, the agents certificate, a compression method, some secret data (MasterSecret) for generating 

session keys, a cipher mode  CipherSpec, and a flag that indicates if the session can be resumable. 

TLS Handshake guarantees three security properties:  

1. Each connection extreme is authenticated by symmetric and asymmetric algorithms. This is 

optional but, generally, at least one extreme must be authenticated.  

2. The secret data negotiation is secure. It is not possible that an intruder guesses some secret data. 

3. The negotiation is trusted. An intruder is not able to modify any message without being detected. 

We consider the case when a client wants to establish a new session with the server, and they have to 

negotiate the session settings.  This situation is represented in Figure 1, where the messages in brackets 

represent optional messages. The protocol  performs the following actions: 

The agents exchange hello messages in order to negotiate the best combination of settings. 

These settings are the agent protocol version, a session identifier, a CipherSuite and a 

compression method. Two random values are generated: ClientHello.random and 

ServerHello.random.

ISBN: 972-8924-09-7 © 2006 IADIS

58



The agents exchange some secret data in a secure way. The client generates some secret data 

that is sent to the server in the ClientKeyExchange message.  

The agents authenticate each extreme if it is required by the selected CipherSuite. Then, the 

agent must send a Certificate message. If a certificate allows a digital sign  and the owner is the 

client, it sends a CertificateVerify message. If the owner is the server, it sends a  

ServerKeyExchange message.  

They finish the handshake with a ChangeCipherSpec message and a Finished message. The 

Finished message includes all the previous handshake messages and allows an agent to verify 

whether the session parameters are correct or not.  

Figure 1. TLS Handshake messages for establishing  a new session 

2.2 TLS Extensions 

TLS provides a general mechanism in order to extend its functionally. This extension mechanism is described 

in detail in Slake-Wilson et al.(2003). Some specific extensions for wireless networks are  described in that 

document. These extensions focus on the constraints of memory and bandwidth of wireless clients as mobile  

phones or personal digital assistants (PDAs). See Table 1 for more information about specific extensions. 

Table 1. Summary of the specific TLS extensions 

Extension type Code Description 

Server_name 0 Indicate server name in a virtual network 

Max_fragment_length 1 Negotiate a maximum fragment size 

Client_certificate_url 2 Use a URL certificate instead of a certificate 

Trusted_ca_keys 3 Report to the server about the client CA root 

Truncated_hmac 4 Use truncated HMAC 

Status_request 5 The client request the server certificate status 

The general extension mechanism only modifies Hello messages. An Extended Hello message includes a 

new field, a list of extensions. Each extension is a pair composed of an identifier of the extension type and 

some extension data. 

When a client requests an extended function from a server, it sends an Extended Hello message. If the 

server does not support the client request, it can decide to finish the handshake. Otherwise the server sends an 

Extended Hello message which includes the same type of extension without extension data.  

A client finishes the handshake when it receives an Extended Hello which contains an extension type 

different from the one requested, or when it receives an Extended Hello message when client did not request 

any extension.  

Only the client is allowed to request for extensions, and it can request as many extensions as it can 

include into  2 16 – 1 bytes. 

IADIS International Conference Applied Computing 2006

59



3. VERIFICATION OF TLS HANDSHAKE 

In this section we focus on the study of the TLS protocol in an environment where there are three kinds of 

agents: clients, servers and intruders. A group of clients are connected to a server and an intruder may 

interfere in the message stream. 

The intruder is allowed to: 

Overhead and intercept all the messages over the network. 

Modify the messages. He can add bytes, delete bytes or change the value of several bytes. 

Generate new messages using its initial knowledge or parts of the overheard messages. 

Send a new or captured message to another entity of the system. 

Nevertheless, we consider that it cannot perform cryptanalysis. 

We assume that all the cryptographic functions and algorithms are secure, and there are trusted certificate 

authorities (CA) that generate secure and non-modified certificates. 

3.1 Establishing a New Session 

When a client and a server establish a new session, the following steps are performed:   

1. The Agents exchange two Hello messages, ClientHello and ServerHello, to negotiate the cipher  

algorithm (CipherSuite), the compression method, a session identifier, agent protocol version and 

some random  data. These  messages allow the agents:  

To agree on security parameters and algorithms,  such as cipher algorithm, hash function, 

which agents have to authenticate, etc. 

To exchange some cryptographic data needed to generate session keys  (random data and 

session identifier). 

To provide security parameters to record layer, such as the compression method. 

2. Then, the authentication phase starts. The server sends its certificate in a Certificate message. If the 

client has to authenticate himself with the server, the server sends a  CertificateRequest message.  

The client answers with its Certificate message. Sometimes,  the client certificate is not enough to 

guarantee its identity. In this case it sends a ClientVerify message with a digital signature calculate 

from some session parameters.  

3. Afterwards the agents exchange some secret  data and  both of them generates session data. 

4. Both agents verify that all the exchanged parameters are correct and they were not modified. Finally 

they exchange Finished messages. 

A description of the system and the Casper protocol specification when a client wants to establish a new 

session with a server is depicted in Figure 2 . 

 We do not consider in our protocol specification some messages because  they are only constants than 

agents use to indicate they are ready to start the following phase. In order to simplify the protocol 

specification, we consider that the session identifier is included in the CipherSuite constant because both 

variables have a very similar treatment. We will use these simplifications  through all the verifications. 

In our study, we consider three security properties:  

A. Secret(C, preSecret,[S]) 

B. Agreement(C,S, [preSecret, SuiteS, MCompression, PKServer, NonceC, NonceS, verS, verC])  

C. Agreement(S,C, [preSecret, SuiteS, MCompression, PKServer, NonceC, NonceS, verS, verC])  

The property A indicates that the client exchanges some secret data with the server with success and the 

intruder is not able to guest the secret. Our description of the protocol satisfies it.  

Properties B and C are similar. In the first one we check if the client completes a TLS Handshake run 

with the server and both of them have the same value for a list of variables: the secret data preKey, the 

selected CipherSuite SuiteS, the compression method MCompression, the server public key PKServer, the 

random data NonceC and NonceS, and the agents protocol version verC and verS.

The property C is similar but now is the server which completes a TLS Handshake run with the client. 

These properties verify whether the intruder is able to take the place of an honest agent or it  can modify 

some session variables. Our protocol description meets both properties. 

ISBN: 972-8924-09-7 © 2006 IADIS

60



Figure 2. Representation of the system model and protocol specification for establishing a new session 

Figure 3. Representation of the system and protocol specification for the URL certificate extension 

4. VERIFICATION OF TLS EXTENSIONS 

In the previous section we have verified that basic TLS Handshake is a secure protocol. Now we want to 

verify if extended TLS for wireless networks is as secure as the basic version. 

We are going to focus on wireless extensions of TLS which are related to security. Furthermore, we only 

include extensions and verify the situation when a new session is established. The extensions are negotiated 

when the agents establish a new session and they are applied through the session and the resume of the 

IADIS International Conference Applied Computing 2006

61



session. We consider three wireless extensions: URL certificate, trusted CA, and request of server certificate 

status.

4.1 URL Certificate 

Some constrained wireless clients do not have enough memory to store its certificate. It would be desirable 

that when a TLS client has to sent its certificate to a server, instead of sending a full certificate, the client 

could send an URL address where its certificate is stored.  

First, a client sends an Extended Hello message with this extension type. Afterwards, it includes the 

certificate URL instead of the certificate in the Certificate message. When the server receives it, it must 

check the certificate URL and it must retrieve the certificate chain. We represent this process with the 

function CheckURLCorrect, which accepts an agent identifier and an URL, and it returns true when the agent 

is the URL owner.  

A description of the system and the Casper protocol specification when a client uses the URL certificate 

extension is depicted in Figure 3.

We have verified the same three properties that we checked with basic TLS  (see Section 3). In the case of 

property B we have added to the variable list the extension type field.  All the properties are guarantied. 

4.2 Trusted CAs 

Some wireless clients can only store a small number of trusted CA due to their memory limitations. In order 

to avoid failures during TLS Handshake it may be recommendable that constrained clients could send to the 

server a list of its trusted CAs.  

In TLS, clients can send an Extended Hello message with the extension type trusted_ca_authority and a 

list of the trusted CAs that the client knows. Each item of this list has two parameters: the type of CA and the 

identifier of the CA. This list can be empty. When a server receives one of this type of Extended Hello
messages, it selects the more appropriate certificate chain from the CAs list. Then it sends it back to the 

client.  

A description of the system and the Casper protocol specification when a client uses the URL certificate 

extension is depicted in Figure 4.  

We check the properties A, B and C. In this case we modify  property B in order to add the CAs list and 

the extension type to the variables list in the agreement property. This way we check if  the intruder can alter 

them. We did not find any attack. 

4.3 Request of Server Certificate Status 

Finally, we consider the third extension. Some constrained clients use some protocols that verify a certificate 

status instead of checking it itself. Online Certificate Status Protocol (OCSP) (M. Myers; 1999) is one of 

these protocols. TLS includes an extension that allows a client to verify a certificate status without more 

resources. 

First, a client sends an Extended Hello message where it includes an extension type status_request and a 

request field for the certificate status. Nowadays, we only have one type of request,  OCSP. In this kind of 

request, a client includes a list of trusted responders, and a field for extensions request. If the list of 

responders is empty, the responders are implicit.  

We consider that the responders, in this situation the server, are implicit and the client will not ask for any 

extension. Thus, the Extended Hello message only includes the extension type. The server sends the 

Certificate and the CertificateStatus messages. As in the extension, there is only one type of CertificateStatus
response, a OCSP response.  

It includes the protocol version, responder identifier, certificate identifier, certificate status (unknown, 

invalid or valid), validity interleave, extensions, and a digital signature of some message parameters. 

We simplify OCSP response considering that a server only includes the sever identifier, the certificate 

status, a validity interleave and a digital signature calculated across the response. Afterwards a client receives 

the status response and it verifies it with the function Verify. This function returns false if the certificate is 

invalid or it has expired. 

ISBN: 972-8924-09-7 © 2006 IADIS

62



Figure 4. Representation of the system and protocol for Trusted CA extension 

Figure 5. Representation of the system and protocol specification for the Certificate Status extension 

A description of the system and the Casper protocol specification  when a client uses the URL certificate 

extension is depicted in  Figure 5. 

As we did in previous extensions, we have verified the three security properties and we have checked that 

there are no attacks. 

IADIS International Conference Applied Computing 2006

63



5. CONCLUSION

Our analysis has shown that TLS and its extensions for wireless networks allow a client and a server to 

exchange some secret data in a secure way when they communicate over an insecure wireless network. 

Agents can generate secure session keys that guarantee that all data application encrypted with them is secret, 

and the connection is private. Thus, extended TLS is as secure as basic TLS. The main advantage of TLS 

extensions over basic TLS is that clients may save bandwidth and memory when they connect from  mobile 

devices. 

Although TLS has been shown to be secure, it is worth noting that we have focused on the verification of 

TLS and extensions specifications as published in Dierks et al.,1999 and Slake-Wilson et al.,2003. This does 

not mean that an attack over a real implementation of the protocol can be performed (Canvel, B. et al;2003).   

Our future work is concerned with extending our analysis of the TLS protocol to other security protocols 

and e-commerce protocols, like Single Sign On protocols with Secure TLS channels. With respect to e-

commerce protocols, we are planning to deal with the verification of security mechanisms related to payment 

for wireless clients. 

REFERENCES

Clarke, E.M.; Grumberg, O. and. Peled, D.A; 1999. Model Cheking. The MIT Press. 

Hoare, C.A.R.; 1985. Communicating Sequential Processes. Prentince Hall. 

Lowe, G.;1998. Casper: A Compiler for the Analysis of Security Protocols. Journal of Computer Security, 6:53–84, 

1998.

Canvel, B.; Hiltgen, A; Vaudenay, S.; and Vuagnoux,M.; 2003. Password Interception in a SSL/TLS Channel. In Proc. of 

Advances in Cryptology (CRYPT’03), LNCS 2729, pages 583–599. Springer, 2003. 

Díaz, G.; Cuartero, F.; Valero, V.; and Pelayo, F.L., 2004. Automatic Verification of the TLS Handshake Protocol. In 

Proc. of the 19th ACM Symposium on Applied Computing (SAC’04). ACM, 2004. 

Dill, D. L.;1996 . The Mur  Verification System. In Proc. of 8th International Conference on Computer Aided 

Verification (CAV’96), LNCS 1102, pages 390–393. Springer, 1996.  

Dill, D. L.; Drexler, A. J;. Hu, A. J.; and Yang, C. H.; 1992. Protocol Verification as a Hardware Design Aid. In Proc. of 

IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’92), pages 522–

525. IEEE Computer Society Press, 1992. 

Mitchell, J. C.; Mitchell, M.;  and Stern, U.; 1997. Automated analysis of cryptographic protocols using Mur . In Proc. 

of IEEE Symposium on Security and Privacy, pages 141–151. IEEE Computer Society Press, 1997. 

Mitchell, J. C.; Shmatikov, V.; and Stern, U.; 1998. Finite-State Analysis of SSL 3.0. In Proc. Of 7th USENIX Security 

Symposium, pages 201–216. USENIX Press, 1998 

Paulson, L. C;1999. Inductive Analysis of the Internet Protocol TLS. ACM Transactions on Information and System 

Security, 2:332–351, 1999.

Wagner, D.; and Schneier, B.; 1996. Analysis of the SSL 3.0 Protocol. In Proc. of 2nd USENIX Workshop on Electronic 

Commerce, pages 29–40. USENIX Press, November 1996.

Dierks, T. and Allen, C. 1999. The TLS Protocol Version 1.0. Internet Standards, RFC 1999. 

http://www.ietf.org/rfc/rfc2222.txt. 

Formal Systems (Europe) Limited. FDR Manual. http://www.fsel.com/fdr2_manual.html. 

Freier, O. A.; Karlton, P.  and Kocher, P. C.; 1996. The SSL Protocol Version 3.0. Netscape Communications. 

http://wp.netscape.com/eng/ssl3/ssl-toc.html 

Myers, M.; Ankney, R.; Malpani, A.; Galperin, S.; and Adams, C.; 1999. Internet X509 Public Key Infracstructure: 

Online Certificate Status Protocol (OCSP). RFC 2560. InternetStandards, RFC 2246, 1999. 

http://www.ietf.org/rfc/rfc2560.txt.

Slake-Wilson, S.; Nystrom, M.; Hopwood, D.; Mikkelsen, J. and Wright, T.; 2003. Transport Layer Security (TLS) 

Extensions. RFC 3546. Technical Report, Network Working Group. 

ISBN: 972-8924-09-7 © 2006 IADIS

64


