
A Specification of a Spatial Query Language over GML
J.E Córcoles

Secc. Tecnología de la Información.
Universidad de Castilla-La Mancha

Campus Universitario
s/n.02071.Albacete. Spain
+34967599200 ext 2412

corcoles@idr-ab.uclm.es

P. González
Departamento de Informática

Universidad de Castilla-La Mancha
Campus Universitario

s/n.02071.Albacete. Spain
+34967599200 ext 2457

pgonzalez@info-ab.uclm.es
ABSTRACT
OGC (OpenGIS Consortium) is contributing with a XML
specification to the representation of geographic information
(called GML 2.0 - Geographical Markup Language) [13]. GML
allows the exchange of geographic information in the Web. The
models based on XML benefit the interoperability, and thus
GML allows the exchange of geographic information on the Web.
However, there is another important advantage to the models
based on XML (GML, ARCHEOGIS [4]): it may be queried.

In this paper, a query language GML is shown. The data model
and the algebra underlying the query language are an extension
of [2] to support spatial features. The query language has a
familiar select-from-where syntax and is based on SQL
(Structured Query Language). It includes a set of spatial
operators (disjoint, touches, etc.), and includes traditional
operators (=,>, <,...) for non-spatial information.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages – Data
manipulation languages, Query languages.

General Terms
Management, Design, Languages.

Keywords
Interoperability, XML, GML, query language.

1. INTRODUCTION
The Geographical Markup Language (GML) is an XML
encoding for the transport and storage of geographic information,
including both the spatial and non-spatial properties of
geographic features [13]. The mechanisms and syntax that GML
uses to encode geographic information in XML are defined in the
specification of OpenGIS [12].

The fact that GML is an XML encoding is an important feature
for two reasons: the first is that there are a great number of tools

that allow you to manage XML files and schemas using a
graphical user interface. The second is that there are very many
query language proposals for XML files [10]. The latter is the
most important advantage since there are many models that have
been based on XML (ARCHEOGIS [4], GML,etc.) owing to its
facility for being queried.

To date, the query languages over XML are of general use.
However, it is necessary to enrich this query language with
spatial operators if we wish to apply it over spatial data encoded
with GML [5]. Otherwise, these query languages will be used to
query alphanumeric features of an XML document and not, for
example, the topological relationship between two spatial
regions.

In order to understand the main innovative features in this work,
the state of the art in query languages over XML is shown [5]. In
this paper, we have studied and compared the three most
important query languages over XML. For the comparison to
show a common pattern, the definition of a group of features that
all query languages over XML must support is necessary. These
features have been obtained from Bonifati and Ceri [3], and
Quass [14]. In addition, the possibility of a language supporting
spatial operators is defined. This feature is important because it
is supported only by this query language. The languages studied
are XQL (XML Query Language) [15], XML-QL [6] and Lorel
[1] (XQuery is not included in this comparison because the work
is still in progress at the present time [16]). XQL is a notation for
selecting the elements and text of XML documents. XQL can be
considered a natural extension to the XSL pattern syntax [17]. It
is designed with the goal of being syntactically very simple and
compact, with reduced expressive power [3]. XML-QL extends
SQL with an explicit construct clause for building the document
resulting from the query and uses the element patterns to match
data in a XML document. XML-QL can express queries as well
as transformations for integrating XML data from different
sources. LOREL was originally designed for querying semi-
structured data and has now been extended to XML data. It is a
user-friendly language in the SQL\OQL style, including a string
mechanism for type coercion and permitting very powerful path
expressions, which is extremely useful when the structure of a
document is not known in advance.

The comparison is shown in the following table.

Table 1: Comparison between languages over XML
XQL XML-QL LOREL

Clean Semantics YES YES YES
Path Expressions YES YES YES
Ability to return an XML document YES YES YES
Ability to query a return XML tags NO YES YES

and attributes
Intelligence type coercion Partial NO YES
Handles unexpected data YES YES YES
Allows queries when the DTD is not
fully known

YES YES YES

Returns unnamed attributes YES YES -
Preserves Order Partial YES YES
Allows Spatial operators NO NO NO

This study is used below to compare these languages with our
query language.

In Sections 2 and 3 an overview of the underlying data model and
algebra is shown. This is a very important part that supplies the
semantics of our language. The syntax design for this query
language is shown in Section 4. The query language describes
how to carry out the features enumerated in the Table1. Section 5
shows conclusions and future work.

2. DATA MODEL
The data model dealt with in this paper is an extension of a data
model proposed by Beech, Malhotra and Rys [2]. It shows how
the components of a XML document and their interrelationships
can be represented as a directed graph. This data model has been
selected because it can be easily extended. In addition, it is very
simple and powerful. Recently, W3C has proposed another data
model and algebra, but this proposal is still in progress [9][8].

In order to query XML document, the data model does not need
to be able to represent objects of a high abstraction level (for
instance Road object, River object, Cadastral Parcel object, etc.).
It is only necessary to represent simple types (integer, string,
etc.).

However, in order to query geometry types represented by GML,
it is necessary to identify high level objects (river, city, park,
etc.) over which spatial operators apply, in addition to simple
types (low level objects) to query alphanumeric features
(number, name, etc.).

The main extension realised to the data model from [2] includes
a new type of vertex (called geometry vertex, Vgeometry) and
defines its properties. This vertex allows the representation in
our data model of geometry types defined in GML. This
modification preserves the power of the original data model to
query XML documents, because the geometry vertices are not
represented if the XML document has no geometry features, i.e.
it is not a GML document.

We now show an overview of our data model. All aspects of the
data model ([2]) that are not relevant to this work have been
omitted. Our data model is a logical model and is silent on how
its components should be stored.

A document XML (GML) is represented in our data model by a
directed graph G = (V, E, A, R, O). V is the set of elements and
values vertices in the graph (V= Velement ? Vgeometry ? Vint, ?
Vstring, …). E represents the set of directed edges that express
element containment in a XML document. A is the set of directed
edges that represent the relationships between elements and
values expressed by XML attributes. R represents the
relationships between elements referenced from other elements
via IDREF and IDREFS attributes in the presence of schema

information, Xlink, URI. Finally O represents the local order
between edges of a particular class, E, A or R, which connects a
parent element to its children.

2.1 Vertices
The graph contains three categories of vertices (or nodes):
vertices that represent data values (Vtype(v)), vertices that
represent geometry elements in GML (Vgeometry), and vertices that
represent the rest of non-geometry elements of a document
(Velement).

The type of elements represented by Vgeometry are: coordinate
elements (gml:CoordType and gml:CoordinatesType), primitive
geometry elements (gml:PointType, gml:LineStringType,
gml:LinearRingType, gml:PolygonType, gml:BoxType), and
aggregate geometry elements (gml:MultiPointType,
gml:MultiLineStringType, gml:MultiPolygonType). Each one of
these Types has a direct relationship with the following elements
defined in the GML Schemas: coord, coordinates, Point,
LinesString, LinearRing, Polygon, Box, MultiPoint,
MultiLineString and MultiPolygon.

The type of element vertices Velement is element and the type of
value vertex Vtype(v) is decimal, string, … (Vinteger, Vstring, etc.)

Each XML element is represented as an vertex v? (Velement

,Vgeometry). v has a unique, logical and immutable abstract
identifier. It has to be unique to serve its role as identifying key,
it is logical in the sense that the identifier is independent from
the physical store, and is immutable to preserve relationships
expressed using the identifier. The abstract identifier cannot be
directly accessed by the query.

In order to create the data model starting from a XML document,
a function vertex(x) was specified to transform an XML element
or concrete value into a vertex of our data model. Its function
extends the original function from [2] to be able to support
geometry vertex. The definition of vertex(x) as follows:

? If x is an XML element whose type is equal to element, then
this function returns element’s abstract identifier and
element as its type (vertex(x) ? V ? (get_oid(x), element) ?
Velement).

? If the type of x is one of the geometry types shown above,
then this function return the value(x) and its type (vertex(x)
? V ? (value(x), type(x))) ? Vgeometry). The definition of
value(x) is shown in Sub-section 2.4. The type of x is
obtained from the GML schema of the document.

? To the value vertex, this function returns its value and
concrete data type (vertex(x) ? V ? (x, type(x))) ? Vtype(v)).
The type of x may be string, integer, etc.

2.2 Edges
Let us now turn to the edges structure (E) of the data model. This
structure respects the original design from [2]: Every edge e ? E
is a directed relationship (name ? Tname(namespaces[2]), parent
? (Velement, Vgeometry), child ? V) from an element parent vertex to
a child vertex with the name. The edge from parent elements to
value vertices have the special name ~data. Edge from parent
elements to comment and processing instruction have the names

~comment and ~PI, respectively. Every edge e ? A is a directed
relationship (name ? Tname, parent ? (Velement, Vgeometry), child ?
Vtype(v)) from an element parent vertex to a value child vertex
with the name name. Every edge e ? R is a directed relationship
(parent ? V element , refegdes ? P(E ? A), child ? V) from an
element parent vertex to an element child vertex, which is
indicated by an IDREF or IDREFS attribute in the presence of
schema information, an XLink, or URI value. refedges denotes
the set of edges that form the basis of the reference. An IDREFS
attribute or a multivalued XLink is mapped into multiple R
edges, one for every element referred to.

2.3 Order
The order of the data model respects the original design from [2].
O defines an order between edges if and only if they share the
same parent and they are all of the same class i.e. all E, A or R.
Formally, O ? {(e ? E? A? R, succ ? E? A? R) | parent(e) =
parent(succ) ? (e ? E ? succ ? E ? e ? A ? succ ? A ? e ? R ?
succ ? R)} where succ denotes the successor of e in the order. In
the case of reference edges, the order among individual
references of multi-valued references is defined according to the
rules of the reference mechanism. In addition, the order among
the refedges determines the order among the different references.
This implies that there is only a total order among references that
have the same type of refedges and the order among all reference
edges is partial. The predecessor edge in the order can be
determined by pred(x) ? E? A? R? e(o) | ? o ? O:succ(o) = x.

2.4 Value(x) Operation
Once the structure of vertices and edges of our data model is
known, the operation value is redefined. This operation allows to
obtain the value of a vertex over which an operator of the algebra
is applied. Redefinition of this operation is necessary, because in
the original data model ([2]) the value operation is only applied
over element vertices and value vertices. The value operation
over element vertex returns the unique identifier of the vertex,
and if applied over value vertex returns the value of this vertex.

The value of a geometry element can be defined depending on
the type of element. This function returns a list, which in turn
have other lists. Each coordinate is made up of one list with two
lists (value of X and Y). The definition of value function is
developed using algebra operators which are defined in [2].

Value x =

if type(x) = coord then

[value(child(? [E,X](x)))] ? value(child(? [E,Y](x)))]

elseif type(x) = coordinates then

[Value(x)]

elseif type(x) = Point then

[value(*[child(? [E,Coord | Coordinates](x))])]

elseif type(x) = LineString then

[value(*[child(? [E,Coord | Coordinates](x))])]

elseif type(x) = LinearRing then

[value(*[child(? [E,Coord | Coordinates](x))])]

elseif type(x) = Box then

[value(*[child(? [E,Coord | Coordinates](x))])]

elseif type(x) = Polygon then

[value(*[child(? [E,LinearRing](x))])]

elseif type(x) = Polygon then

[value(*[child(? [E,LinearRing](x))])]

elseif type(x) = MultiPolygon then

[value(*[child(? [E,Polygon](x))])]

elseif type(x) = MultiLineString then

[value(*[child(? [E,LineString](x))])]

elseif type(x) = MultiPoint then

[value(*[child(? [E,Point](x))])]

2.5 Overview of the Operations over the
Geometry Vertex
The following table gives an overview of the properties of the
geometry vertex. These properties are the same as the properties
of an element vertex in [2]; the behaviour of the value and type,
however, has been redefined, as shown above.

Table 2: Overview of the properties of the geometry vertex
Type Properties Description
Geometry vertex Value List of lists
(Vgeometry) Type Geometry Type

Parent Geometry or element vertex
Referredby List of geometry or element

vertices: traversing back over
references edge.

Childelements List of E edges
Attributes Set of attribute edges (A)
Referents List of reference edges (R)

2.6 Example of the Data Model
To illustrate our data model, an example is given (figure 1 and
figure 2). This example shows the data model for a portion of a
GML document, called cambridge.xml defined in [13]. It
represents part of the definition of a city model that includes
River Objects, Road Objects, boundary box of the city, name, etc.
In the example only a Road object is defined. In order to avoid
confusion, the data types and values of the Geometry vertices
have not been included.

<cityMember> <Road>
 <gml:name>M11</gml:name>
 <linearGeometry>
 <gml:LineString ID=”23">
 <gml:coord>
 <gml:X>0</gml:X><gml:Y>5.0</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>20.6</gml:X><gml:Y>10.7</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>80.5</gml:X><gml:Y>60.9</gml:Y>
 </gml:coord>
 </gml:LineString>
 </linearGeometry>
 <classification>motorway</classification>
 <number>11</number>
</Road> </cityMember>

Figure 1: GML Document

Figure 2: Mapping a GML document to the Data model

The node Vls is of type LinearString (information obtained on
the document schema). Vcd1, Vcd2 y Vcd3 is of type Coord.
According to the definition of value function, the values of Vls,
Vcd1, Vcd2 y Vcd3 are:

Value(Vcd1) = [[0],[5.0]]
Value(Vcd2) = [[20.6][10.7]]
Value(Vcd3) = [[80.5] [60.9]]
Value(Vld) = [[[0],[5.0]] [[20.6][10.7]] [[80.5] [60.9]]]

3. XML ALGEBRA
Now that the data model has been defined, we will define the
algebra applied over this data model. This algebra should
provide capabilities for selecting documents or components of
documents that meet given. The algebra should also support the
composition of XML documents from selected documents and
their components. [2] proposes an algebra with these features
that is minimal enough to provide an abstraction of the basic
functionality. However, in order to complete this algebra it is
necessary to define a set of spatial relationship predicates to be
applied over the geometry vertex.

The original algebra from [2] has the following operators:
navigation (?), Kleene star (*), map, selection (with existential
and universal quantification), Joins, distinct, sort, unorder, and
operations to results construction. All of these operators can be
used in our data model explained above.

In addition to these operators, the main contribution to this
algebra is the definition of spatial relationship predicates. The

set of predicates is obtained from OpenGIS specification [11].
This is based on the Dimensionally Extended Nine-Intersection
Model [7]. The six predicates are named Disjoint, Touches,
Crosses, Within and Overlaps. The definition of these predicates
[11] is given in the Table 3. The term P is used to refer to 0
dimensional geometries (Points and MultiPoints), L is used to
refer to one-dimensional geometries (LineStrings and
MultiLineStrings) and A is used to refer to two-dimensional
geometries (Polygons and MultiPolygons).

Table 3: Definition of predicates
Domain Operator

Topologically closed
geometries

Disjoint(a,b) ? a ? b = ?

a and b applies to the A/A, L/L,
L/A, P/A and P/L groups of
relationships.

Touches(a,b) ? (I(a)? I(b) = ?) ?
(a ? b) ? ?

a and b applies to the P/L, P/A,
L/L and L/A.

Crosses(a,b) ? (dim(I(a) ? I(b)) <
max(dim(I(a)), dim(I(b)))) ? (a ? b ? a)
? (a ? b ? b)

a and b applies to the A/A,
P/A,L/A,L/L

Within(a,b) ? (a ? b = a) ? (I(a) ? I(b)
? ?)

a and b applies to the A/A,
P/A,L/A,L/L

Contains(a,b) ? Within(b,a)

a and b applies to the A/A,
P/A,L/A,L/L

Intersects(a,b) ? not.Disjoint(a,b)

In addition, other operators that support spatial analysis have
been included: distance, buffer, convexhull, intersection, union,
difference and symdifference. The domain of these operators is
detailed in [11]. These operators are applied over geometry
vertex.

An example of a query composed with this algebra is now
shown. To select all Road names that have a distance less that
30, we could write the following expressions:

A:= ? [E,Road](*[child(? [E,#](x))] (x:root))

B:=? [distance(value(child(? [E,LinerGeometry|LineString])))<30](c:A)

C:= child(? [E,Name](child(B)))

A contains all Road edges in the document. The operator *
reaches all vertices that are reachable from the root vertex (or
vertices), and the follow operator then follows all existing Road
edges. B contains all Road edges that have at least one
LineString or LinearGeometry with the requested distance less
than 30. C is the final result: the requested Road names.

4. QUERY LANGUAGE
The definition of queries with algebraic expressions is complex
and describes the process inefficiently. For this reason, a query
language should be defined to make a more user-friendly
interface, and to allow several techniques to be applied in order
to achieve a more efficient implementation. In this Section, the
main features of a query language are shown. This language is
still being developed at present, and therefore in this paper our
purpose is simply to show its syntax and semantics and not its
implementation features.

The syntax chosen for this language is based on SQL. The Select-
From-Where statement is widespread in query languages since it
allows for rapid learning of the language. Note that in this
language no effort is made to give the definition of these features
of SQL. Only important features for running simple and powerful
queries are developed. On the other hand, many features of the
query languages upon XML are not considered in traditional
query languages (SQL, OQL, etc.), although they are necessary
in this kind of language (i.e. path expressions). The syntax of our
language is very similar to the syntax defined in Lorel [1]

The characteristics of the language are shown using the features
that any language over XML must have [3][14]. We can compare
this language with the other languages studied in Section 1. It is
assumed that queries are performed over the document
cambridge.xml defined in [13]. The characteristics of our
language are:

Clean Semantics: All languages based on select-from-where
statements allow powerful and well-structured queries to be
written.

Path Expressions: The dot notation is used to navigate in the
data model.

Ability to return an XML document: For compatibility with other
tools, the result set of a query is another XML document. The
structure of the new document should respect the GML schemas
if it has geometry types. For example, if the user wants to obtain
the Roads (<LinearGeometry>) of “Motorway” classification
(<classification>) and number (<number>) equal to 11 then he or
she should make the following query

Select C.Road.LinearGeometry
From [http://www.uclm.es//prove.xml].CityModel C
Where C.Road.classification Like ‘Motorway’ and C.Road.number = 11

 Return the next document:

<linearGeometry>
 <gml:LineString
srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coord><gml:X>0</gml:X><gml:Y>5.0</gml:Y>
</gml:coord>
<gml:coord><gml:X>20.6</gml:X><gml:Y>10.7</gml:Y>
</gml:coord>
<gml:coord><gml:X>80.5</gml:X><gml:Y>60.9</gml:Y>
</gml:coord>
</gml:LineString>
</linearGeometry>

Ability to query and return XML tags and attributes: This
language allows some attributes and tags to be partially defined
in the query. The symbol ‘%’ is used as a wildcard in the partial
definitions. For example: find all Road names with number equal
to 11. Since the user does not know the exact name of the tag
number, the query may be

Select R.name
From [http://www.uclm.es//prove.xml].Road R
Where R.(num%) = 11

Intelligence type coercion: This language supports the automatic
coercion between simple types. However, the coercion is not
defined for geometry types.

Handles unexpected data: To define this feature, the operators
‘Like’ and ‘=’ are handled in the same way as an existential
quantifier. Thus, if a tag has several values it then allows the
first to be selected to carry out the condition.

Ability to allow queries when the schema is not fully known: In
order to make it unnecessary for the user to know the schema of a
document, this language shows the optional tags and attributes in
brackets each one of them being separated by the symbol ‘|’. This
symbol ‘|’ means “optimality between different tags or attributes.
In this way, the user indicates that he or she wants to find values
stored in elements with a different syntax but with the same
semantics. For example, to return all cities of the two documents
(prove1.xml ,prove2.xml) which have roads with name or
description equal to ‘M11’, the following query may be used:

Select C.name
From [http://www.uclm.es//prove.xml,
http://www.uclm.es//prove2.xml].CityModel as C,
Where C.road.(name | description) Like ‘M11’

Returns unnamed attributes: The language allows us to establish
in the Select clause whether it returns only tags or tags with all
these children. To achieve this the symbol ‘̂ ’ is used. This
symbol means that a determined tag or attribute is not included
in the result set. For example, if the user wants to return all
elements of roads (<road>), the following query should be
written:

Select C.(^ Road)
From [http://www.uclm.es//prove.xml].CityModel as C

Preserves Order: The queries respect the order in which each
piece of data is stored.

Allows Geometry operators: This feature is the main difference
with other query languages. There are two types of operators:
methods for testing Spatial Relations and methods that support
Spatial Analysis. Table 4 shows the syntax and returned types of
these operators. The algebra operators are combined to obtain
these high-level abstraction operators. Those operators returning
Boolean types may be combined with the not operator.

Tabla4: Spatial operators supported by the query language
Syntax Return Description
Geometry1 equals
Geometry2

Boolean if Geometry1 is ‘spatially equal’
to Geometry2.

Geometry1
disjoint/intersects/
touches/crosses/within/c
ontains/overlap
ListGeometries

Boolean If Geometry1 is
disjoint/intersects,
touches/crosses/within/contains/o
verlaps with some Geometry of
ListGeometries (1 or more
items).

Geometry1 disjoint_all/
intersects_all/
touches_all/
crosses_all/within_all/
contains_all/ overlap_all
ListGeometries

Boolean If Geometry1 is disjoint/
intersects/touches/crosses/within/c
ontains/overlaps with all
Geometry of ListGeometries (1 or
more items).

Distance
(Geometry1,Geometry2)

Double Returns the shortest distance
between any two points in the two
geometries.

Buffer (Geometry1,
double)

Geometry Returns a geometry that
represents all points whose
distance from Geometry1 is less
than or equal to distance (double).

ConvexHull
(Geometry1)

Geometry Returns a geometry that
represents the convex hull of
Geometry1.

Intersection(Geometry1,
Geometry2)

Geometry Returns a geometry that
represents the point set
intersection of Geometry1 with
Geometry2.

Union (Geometry1,
Geometry2)

Geometry Returns a geometry that
represents the point set union of
Geometry1 with Geometry2

Difference (Geometry1,
Geometry2)

Geometry Returns a geometry that
represents the point set difference
of Geometry1 with Geometry2

SymDifference
(Geometry1,
Geometry2)

Geometry Returns a geometry that
represents the point set symmetric
difference of Geometry1 with
Geometry2

To resume, the next query contains most of features defined. It
obtains all names of Roads with classification such as
“motorway”, number or “num” greater than zero and intersect
with all rivers with names such as “cam%”.

Select C.%.Road.name.
From [http://www.uclm.es//prove.xml].CityModel C
Where C.%.clasification. Like ‘Motorway’ and C.%.[number|num]>0
and
C.CityMember.Road.%.LineString intersect_all (
select CM.%.River.LineString
from [http://www.uclm.es//prove.xml].CityModel CM
where CM.CityMember.River.name like (cam%)

Note that nested select is possible in the query language.

5. CONCLUSIONS
In this paper a new query language over GML has been shown.
The main feature of this language is that it includes spatial
operators in its specifications. This feature is not included in the
most widely-known XML query languages. To carry out the
implementation of this language it is necessary to previously
define a data model and an algebra that support basic features of
query languages XML and spatial features. For this reason, we
have extended a data model and algebra [2] to allow the
representation of geometry elements and geometry operators over
these elements. Owing to this extension, with the language
specified, querying GML or XML documents is possible,
because the original features from [2] are conserved.

When this algebra and data model were defined, we described
the necessary features that the final query language must have.
The syntax of the query is similar to SQL. Apart from the
geometry features, the remaining features of the query language
are obtained from previous works by Bonifati and Quass. The
specification of this language is of great importance for the
immediate future of GIS

Future work foresees the implementation of this language
applying optimisation techniques to spatial operators.
Furthermore, a Web environment will be developed to allow
spatial distributed queries on the Web. Temporal operators will
also be added to the algebra to achieve a spatio-temporal query
language.

6. REFERENCES
[1] Abiteboul, S., Quass, S., McHugh, J., Widom, J. and

Wiener, J.. The Lorel Query Language for Semistructured
Data. International Journal on Digital Libraries, 1, 1, 68-
88, 1997

[2] Beech, D., Malhotra. A., Rys, M. A Formal Data Model
and Algebra for XML.
http://www-db.stanford.edu/dbseminar/Archive/FallY99/
malhotra-slides/malhotra.pdf. 1999

[3] Bonifati,A. and Ceri, S., Comparative Analysis of Five
XML Query Languages. SIGMOD Record 29, 1, 68-79,
2000

[4] Brovelli, M.A., Maurino. A. ARCHEOGIS: an
interoperable model for archaeological data. ISPRS 2000
Conference, 2000

[5] Córcoles, J.,García-Consuegra, J., Peralta, J. and Navarro
E. A Spatio-Temporal Query Language for a Data Model
based on XML.6th EC-GI & GIS Workshop. Lyon, France.
2000

[6] Deutsch, A., Fernandez, M., Florescu, D., Levy, A. and
Suciu, D., XML-QL: A Query Language for XML.
Technical Report NOTE-xml-ql-19980819.
http://www.w3.org/TR/1998/NOTE-xml-ql-
19980819.html. 1998

[7] Egenhofer, M. and Herring J., Categorizing Binary
Topological Relations Between Regions, Lines, and Points
in Geographic Databases. 4th International Symposium on
Spatial Data Handling, Zurich, International Geographical
Union, 803-813. 1990

[8] Fankhauser, P., Fernandez, M., Malhotra, A., Rys, M.,
Siméon, J and Wadler, P. The XML Query Algebra. W3C
Working Draft.
http://www.w3.org/TR/query-algebra/. 2001

[9] Fernandez, M. and Robie, J. XML Query Data Model.
W3C Working Draft.
http://www.w3.org/TR/query-datamodel. 2001

[10] Marchiori M. The Query Languages Workshop
http://www.w3.org/TandS/QL/QL98/pp.html. 1999

[11] Open GIS Consortium, Inc. OpenGIS Ò Ò Simple
Features Specification For SQL Revision 1.1OpenGIS
Project Document 99-049 Release. 1999

[12] OpenGis Consortium. Specifications.
http://www.opengis.org/techno/specs.htm.1999

[13] OpenGIS. Geography Markup Language (GML) v2.0.
Document Number: 01-029. 2001.
http://www.opengis.net/gml/01-029/GML2.html

[14] Quass, D. Ten features necessary for an XML query
language. In proc. of the Query Language workshop,
Cambridge, Mass., 1998.

[15] Robie., J. The design of XQL.
http://www.w3.org/style/XSL/Group/1998/09/XQL-
design.html. 1998

[16] XQuery: A Query Language for XMLW3C Working Draft
15 February 2001
http://www.w3.org/TR/2001/WD-xquery-20010215. 2001

[17] XSL Specification. W3C recommendation.
http://www.w3. org/TR/REC-xml. 1998

