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Abstract

This paper introduces an extended version of the tra-
ditional Partitioned Global Address Space (PGAS) model,
for the implementation of scalable cluster systems, that the
HyperTransport Consortium Advanced Technology Group
(ATG) is working on. Using the Simics and GEMS simu-
lators, we developed a software module that approximates
the behaviour of a PGAS cluster. This approach mainly
provides the simplest mechanism to evaluate how much the
PGAS infrastructure will affect overall the application per-
formance. The aim of this work is to study the feasibility
of the ATG’s PGAS model, for running applications with
high memory requirements. It is not focused on measure the
performance of applications, although some performance
measures are given. Such a model, will let manufacturers
build clusters that enable the execution of these applica-
tions, in such a way that it will be impossible to run them
in a single processor without adding more memory, or in
a multi-processor without modifying the source code of the
application.

1. Introduction

Traditionally, shared memory systems have been used
to run applications requiring a high memory space. How-
ever, such as systems do not scale more than tens of pro-
cessors. As memory requirements of applications and the
number of applications that run concurrently on comput-
ers have been increasing, designers have made proposals to
partially solve the lack of memory on computer systems. In
this way, modern operating systems provide advanced vir-
tual memory managers that solve the lack of memory. These
managers utilize secondary devices for freeing contents of
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memory whenever it is necessary. This approach provides a
simple way of running applications that have a running im-
age size bigger than available physical memory size. When
an application is running and the system is low of memory,
the virtual memory manager can evict it of a special de-
vice called a “swap device”, or swap, to free memory. This
technique is called swapping [17], and there are several ap-
proaches in the literature about it. Just to mention a few,
Unix-based systems use a separate swap partition type that
is hosted in the user file system. In contrast, Windows uses
a user-space file that is hosted inside the file system, while
the MacOS X operating system can use partitions and files.

Nevertheless, swapping has several drawbacks. The first
one comes from the access time of the swapping device,
which is usually a hard disk, therefore, one or more orders
of magnitude higher than the memory access time. The sec-
ond drawback is thrashing, which occurs when the mem-
ory manager evicts parts of the running image of a process
and, after a time, it reallocates those parts in memory again.
Thus, solving the lack of memory always involves a high
run time.

The HyperTransport Consortium Advanced Technology
Group (ATG) is working on an extended version of the tra-
ditional PGAS programming model [5]. Such a model will
let manufacturers build clusters with PGAS native support.
In this paper we carry out an assessment of “rough” DP-
GAS model through Simics [11] and GEMS [12] simula-
tors. However, this work has not attempted to conduct a
study using a hardware implementation, because the ATG
has not completed the specification of its DPGAS model
yet, and therefore it is impossible to achieve that kind of
evaluation. The behaviour of the final system will be similar
(bridging the gap) to the behaviour in a cluster with DPGAS
native support.

The AMD’s Opteron processor can be used as a com-
modity to build clusters. This processor includes the mem-
ory controller on-die, in such a way that all memory is ac-
cessible from one memory controller. The Opteron proces-
sors use the AMD’s HyperTransport protocol [9] for com-
municating with each other. Moreover, the HyperTransport



protocol enables CPUs to directly connect the Opteron Hy-
perTransport link to add-in card subsystems via the HTX
connector [7], which is placed in the motherboard.

In addition, the increasing use of interconnection net-
works to intercommunicate the processor and memory, such
as AMD HyperTransport might allow the construction of
scalable systems, from hundreds to thousands of nodes
composed of multicore processors. Therefore, the Opteron
processors will provide the basis to build the clusters with
DPGAS native support.

The remainder of this paper is structured as follows: In
the next section we present a summary of the related work.
The details of the proposed model are explained in section
3, while the section 4 details the simulation scenarios and
the results obtained. In the last section, we conclude and
provide a brief overview of the future work.

2. Related Work

HyperTransport (HT) is an interconnection technology
which enable connecting the processors among each other
and with the I/O devices. It provides an extremely low la-
tency, high bandwidth and excellent scalability. Moreover,
the definition of the HTX connector allows co-processing
and acceleration based on ASIC or FPGA technologies. In
particular, it is receiving a highlighted interest of the com-
munity because it makes easy to reduce power consumption
by the use of accelerators.

Partitioned Global Address Space languages combine
a Single Program Multiple Data (SPMD) programming
model with a global address space, which is logically par-
titioned to give each thread a portion of shared memory
to which it has affinity [19]. In the SPMD model, a fixed
number of threads are created at program startup, and every
thread runs the same program. Each thread has both a space
for private local memory and some partition of the shared
space to which it has affinity. A private object may only be
accessed by its corresponding thread, whereas all threads
can read or write any object in the shared address space.
The partitioning of the shared space into regions with logi-
cal affinity to threads allows programmers to explicitly con-
trol data layout, which is then used by the runtime system
to map threads and their associated data to processors: on a
distributed memory machine, the local memory of a proces-
sor holds both the thread’s private data and the shared data
with affinity to that thread.

The HTC Advanced Technology Group (ATG) [1] is
working on developing proposals for HyperTransport to de-
fine an address space globally and dynamic partitioning
(DPGAS) for using in scalable clusters. The idea is not new,
but it comes from the existing PGAS models [5]. In the bib-
liography several PGAS applications can be found, for ex-
ample, Unified Parallel C [6] to define models of program-

ming languages. In addition, developers of these languages
have tools like GASnet [4] which is a communication inter-
face for programming languages such as Unified Parallel C.
GASnet is a language independent of the network that al-
lows the definition of libraries providing global addressing.
GASnet is inspiring the work of HTC Advanced Technol-
ogy Group for the implementation of PGAS [18] in a native
way.

The ATG is proposing the mechanisms and abstrac-
tions that will allow the construction of clusters using
Opteron processors in common. The motherboard contain-
ing Opteron processors will support the HTX connector. By
plugging extension cards on the HTX connector will allow
the formation of a cluster of motherboards. The memory
controller of each Opteron will divide the whole range of
physical addresses in regions and distribute them among the
memory of other Opterons. Subsequently, the memory con-
trollers will be able to access remote regions of memory
transparently. Following this approach, the Opteron pro-
cessors can avoid the use of a device that swapping up for
the lack of memory, since access to a memory on a mem-
ory controller will be lower than access to a local secondary
storage device, and hence system performance will be en-
hanced.

In such systems, the physically addressable memory in
all nodes is part of a global address space with non-uniform
access time from any specific node. From the perspective
of a node, the global address space is composed of local
partitions and remote partitions where the former can be ac-
cessed with the lowest latency and the latter can be accessed
with larger and possibly non-uniform latencies (across dis-
tinct partitions). In this model, a local partition refers to
DRAM accessed through a tightly integrated memory con-
troller.

The Computer Architecture Group at the University of
Heidelberg in Germany has the expertise to design com-
plex hardware/software systems. The HTX-Board [8], a
contribution of this group, provides a convenient and effi-
cient way to evaluate user specific devices connected to the
Hypertransport connector standardised under the name of
HTX-Connector. In [16] they published the architecture and
mechanisms of the HTX-board. Subsequently, in [10] they
have introduced a novel communication engine in combina-
tion with the HyperTransport interface. They provide an ex-
cellent prototype to get real-world measurements connect-
ing two Opteron through two HTX-boards. Moreover, they
also show the initial latencies of sending a HT packet on a
HT link and propose some optimisations that can minimise
that latency (e.g. doubling the HT clock frequency or mi-
grating FPGA to ASIC technology).
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Figure 1. Diagram of the simulated cluster.

3. Model

Because of the fact that the ATG has not completed the
specification of its model DPGAS yet, it is impossible to
carry out an evaluation using a hardware system. However,
it is feasible to carry out an approximate evaluation of the
DPGAS model by simulation.

In order to simulate the cluster, Simics 2.1 and
GEMS 2.2.19 simulators were used. In the Simics context,
two fundamentals terms are always used:

• The computer on which we are running Simics is re-
ferred tohostsystem.

• The computer simulated by Simics is referred totar-
get system. Specifically, it simulates the cluster with
DPGAS support.

Our approach consists in simulating the execution of a
sequential application as if it would be running on a cluster
with DPGAS support just using the execution-drivenSimics
simulator. In that hypothetical cluster, any processor might
issue requests of the global address space. The global ad-
dress space will consist of the joint of every memory in the
cluster. From the processors point of view, most of the phys-
ical memory in the cluster can be accessed, except some
private areas that will not be allowed to access. The Fig-
ure 1 explains how a cluster can be simulated starting from
a simulated processor in Simics.

Without lossing generality, we run a sequential applica-
tion in the target system and we process every message go-
ing inside the system. The messages are deliverated by the
simulator as they are in a usual execution, but the delay of
every message is customised depending on the type, source
and destination of the message.

In the AMD’s whitepaper [15] a suite of benchmarks
is examined to illustrate their performance and scalabil-
ity in single, multi-processor, and cluster configurations.
Its results clearly show the exceptionally responsivenessof
an Opteron-based NUMA support system. Specifically, it
shows the cost for one processor for accessing to the shared
memory in a four AMD Opteron motherboard. The laten-
cies are given depending on the distance between the trans-
mitter and receiver processors.

Regarding the application, it must be a benchmark that
makes an intense use of memory. Also, a sequential ap-
plicaction is preferred in order to avoid any dependency
produced by a parallel execution. Stream [13] is a well-
known benchmark that measures bandwidth sustainable by
ordinary user programs, and not the theoretical peak band-
width that vendors advertise [14]. Moreover, it is used by
AMD to measure the performance of the memory of their
processors [2].

The benchmark performs functions with matrices that
are stored in memory. The functions are executed several
times. When the benchmark concludes, it returns the rate of



traffic data of memory in MB/seconds and execution time
(average, minimum and maximum) in seconds, for each
function. Both performance indexes are the most relevant
in this kind of benchmarking. The execution time gives the
global performance measure and the traffic rate offers the
real load of the memory system.

4. Evaluation

In this section, we start describing the simulation model
we have used to carry out our experiment. Then, we present
the results we have obtained and some comments about
them.

4.1. Simulation Model

In all the simulations, our customized GEMS module is
loaded. It is responsible for managing all the messages sent
by the memory system. We assume that the target proces-
sors utilised in this work are used to build systems with a
coherent shared memory, similar to the Opteron processors.
Therefore, the GEMS module has to manage the messages
caused by the memory coherence protocols. The study of
memory coherence protocols is out of the scope of this pa-
per. Thus the simulations have been carried out with a single
processor in order to reduce the influence of these protocols.

The host system is a SUN W2100Z workstation that has
two Opteron processors at 2.4 GHz and a DDR-400 mem-
ory of 4 GB. SuSe 10.2 is used as operating system. The tar-
get system is thesarekpreinstalled system of Simics which
is a UltraSPARC processor at 75 MHz. Solaris is used as
operating system and an amount of 512 MB of memory is
configured.

The assumption that the whole memory of the cluster is
512 MB seems initially nonsense. However, the aim of this
work has never been to propose a detailed DPGAS simu-
lation model because the ATG has not finished its DPGAS
model yet. Considering an increase of the target memory
size, that is the memory size of the cluster, requires to in-
crease the Stream benchmark size and then it causes an ex-
ponential simulation time growth. Even though the results
remain representative because the benchmark spreads the
accesses out the memory address space.

Additionally, the parameters of the Stream benchmark
have been set to achieve the following behaviour:

1. Stream runs two series of functions (copy, scale, add
and triad). Previous tests had proved that increasing
the number of series does not alter the final outcome in
the absence of processes that interfere with Stream.

2. The size of Stream is 460 Mbytes. This size was cho-
sen because it represents 90% of the available simu-
lated memory (512 MB).

3. The GEMS simulator requires to set the latencies in
the target processor cycles, so a 2.4 GHz processor was
considered for the translation from real nanoseconds to
simulated cycles.

It must be noticed that the latencies in our simulations are
considered as an approximation. However, we have selected
values that reflect real systems:

• When an access is destined for memory allocated in the
same motherboard, a latency of 115 ns (nanoseconds)
for each access has been considered [15].

• When an access is destined for memory allocated in
a remote motherboard, the latency has been deduced
from the proposed delays in [10, 16]. We assume all
the improvements suggested by [10, 16] like ASIC
technology instead of using FPGA technology, dou-
bling HyperTransport link frequency, and a 16-bit Hy-
perTransport link width. In this case, the calculation of
the latencies is:

– Due to the all technology improvements, [10]
claims that a total latency of 130 ns for the trans-
mission and expects a fixed latency (for local
CPU and remote memory controller) of about
300 ns. The functionality of [10] is exactly the
behavior of a remote write (transfer of data from
one node to another). Then we assume a latency
of 430 ns for a Write operation of 64 byte pay-
load.

– The read is much more difficult. The Opteron
used in the [16] paper only issues 32 bit read op-
erations, due to the access granularity of 64 bit
(a limitation of the K10 architecture). Hence, we
assume a series of 8 consecutive operations have
to be issued to fetch the total amount of 64 byte.
This is the reason to assume that the Read opera-
tion takes 4880 ns.

• When an access is destined for memory mapped in
swap device, we assume a latency of 45600 ns as it is
suggested in [3] for enterprise class harddisks.

Regarding to simulation scenarios, we have considered
the following scenarios:

• Local scenario (1P): It represents a desktop system
with just one processor and one motherboard.

• Shared scenario (4P): It represents a server system,
commonly known as a shared memory multiprocessor.
There are four processors ensembled in one mother-
board.
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Figure 2. Distribution of target memory into
regions and their access type.

• Remote scenario (16P): It represents a enterprise sys-
tem or a cluster. A total of sixteen processors are
distributed between four motherboards of four proces-
sors per motherboard that are interconnected using the
HTX connectors.

A group of extra three scenarios have been selected to
evaluate the loss of performance due to the utilisation of
swapping. The Figure 2 shows the distribution of the target
memory into regions and the access type that is associated
with each region. Each region corresponds to a contiguous
physical memory partition controlled by a single node. In
our test, we assumed all regions are of the same size. These
extra scenarios are based on the previous scenarios and they
consist in distributing the regions of memory between swap-
ping devices, as if they were accesses to secondary devices
and therefore such accesses were applied an extra delay. All
the extra scenarios assume a partitioning of the memory in
16 regions. The main characteristics are:

• 1P-SW.- It is basically the 1P scenario, but the accesses
from the second to the last regions are accesses to a
swap device (see Figure 2(a)).

• 4P-SW-U.- It is similar to the 4P scenario. It assigns
uniformly the swap regions (see Figure 2(b)).

• 4P-SW-D.- Similar to the 4P-SW-U scenario, but the
swap regions are interleaved on the memory (see Fig-
ure 2(c)).

4.2. Simulation Results

The aim of this work has never been focused on the per-
formance of the application, but the behaviour of a cluster
with native DPGAS support (scenario 16P) to run applica-
tions. Note that it will be impossible to run these applica-
tions in a single processor (scenario 1P) or multi-processor
(scenario 4P) due to the memory requirements of these ap-
plications. Note also that the only alternative in these cases
is the use of swapping devices, which is considered in the
1P-SW and 4P-SW scenarios.

The results have shown that scenario 16P are always a
better choice than extra scenarios that implement swapping.
Of course, the performance of the unfeasible scenarios 1P
and 4P is much better than the performance of the 16P sce-
nario, but this one is the best option for those applications
with high memory requirements.

Mainly, it is interesting to know how the execution time
evolves. Figure 3 depicts that the execution time increases
for 4P and 16P on average 0.54 seconds (2.68%) and 40.76
seconds (202.68%) with regard to the 1P scenario. Because
of it is a memory benchmark, it is also interesting to know
how the traffic memory evolves, so the Figure 3 depicts that
the performance of the memory for 4P and 16P decreases
0.53 MB/s (2.63%) and 13.46 MB/s (66.93%), regarding
the performance achieved by scenario 1P. When extra sce-
narios are studied, the results are even worse, as it is ex-
pected. Both, the execution time and the memory traffic,
fall dramatically for all scenarios.

5. Conclusions and Future Work

This paper presents the results of the preliminary assess-
ment of the work in progress that is made by the ATG. Be-
cause of the ATG has not completed the specification of its
DPGAS model yet, it is not possible to carry out a hardware
evaluation. However, we have performance a simulation-
driven study.

Firstly, we developed a module of the GEMS simulator
for tracking the memory requests and customizing their la-
tency. By this module, we could simulate approximately
the behaviour of an application running in a cluster with
DPGAS support. This cluster will run any application
with high memory requirements if they do not exceed the
whole memory of the cluster, because the application will
be spread out the DRAM memory of the processors in the
cluster.

As it was explained, swapping can solve the lack of
memory, but the application performace falls dramatically
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Figure 3. Performance results of the Stream application in each scenario.

as the lack of memory increases. This paper has introduced
the PGAS model as one alternative to swapping. The re-
sults have demostrated that the DPGAS model will never
be a better option than having enough memory in the pro-
cessor that runs the applications, because a lot of time will
spend in accesses to remote memories. However, it will
be always better than using swapping, because the latencies
of the inter-memory communications are always lower than
accesses to swapping.

As future work it is interesting to keep updated of all the
work that is done by the ATG, for example, the real imple-
mentation of the DPGAS support, the future improvements
of the HTX-board, and the specification of the HTX con-
nector.
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