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ABSTRACT

The InfiniBand Architecture (IBA) is an industry-standard architecture for server I/O and interprocessor
communication. InfiniBand is extensively used for interconnection in high-performance clusters. It
has been developed by the InfiniBand®™ Trade Association (IBTA) to provide the levels of reliability,
availability, performance, scalability, and quality of service (QoS) necessary for present and future server
systems.

The provision of QoS in data communication networks is currently the focus of much discussion
and research in both industry and academia. In that sense, IBA enables QoS support with some
mechanisms. In this paper, we examine these mechanisms and describe a way to use them. We propose
a traffic segregation strategy based only on delay requirements. Moreover, we propose a very effective
methodology to compute the virtual lane arbitration tables. Finally, we evaluate our proposal and
performance results show that, with a correct traffic treatment at the output ports, every traffic class
meets its QoS requirements.

Connection requirements

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The InfiniBand Architecture (IBA) [9] is a standard for high-
speed I/O and interprocessor communication. It has been
developed by the InfiniBand Trade Association (IBTA) [10]. This as-
sociation, founded in 1999, includes over 200 leading IT companies.
Membership is also open to Universities, research laboratories, and
others. The IBTA is led by a Steering Committee whose members
come from Cisco, IBM, Intel, Mellanox, QLogic, Sun, and Voltaire.
The proposed standard is a fast, highly scalable interconnect tech-
nology suitable for clusters and high-end servers executing
distributed applications. The IBA specification is open to further
enhancements by manufacturers and researchers.

On the other hand, many current applications have re-
quirements, such as guarantee of bandwidth, bounded delivery
deadline, bounded interarrival delays, etc.,, which not all the
current networks are able to provide. Therefore, it is important for
InfiniBand to be able to satisfy the QoS requirements of current
applications. InfiniBand provides a series of mechanisms that,
when properly used, are able to provide QoS to the applications.
These mechanisms are mainly the segregation of traffic according
to categories and the arbitration of the output ports according to an
arbitration table that can be configured to give priority to certain
flows.
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E-mail addresses: falfaro@dsi.uclm.es (FJ. Alfaro), jsanchez@dsi.uclm.es
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Although IBA is currently used almost exclusively on clusters
for high-performance computing, it may expand its market in
the future, being implemented in clusters for different application
areas that may require QoS support. We envisage two different
application areas where our proposals may prove to be very
useful. The first one is providing Internet services that require
QoS guarantees (e.g. video on demand) to a very large number of
concurrent clients. While it is true that the Internet protocols play
a critical role in providing such a QoS, it is also true that those
Internet servers must be highly parallel (e.g. a cluster) and will
require internal QoS support when retrieving information from
the disk subsystem and transmitting it through its system area
network (e.g. InfiniBand) from the disks to the server nodes.

The second scenario is providing bandwidth and latency
guarantees to each partition when the interconnection network
of a cluster is partitioned into several virtual networks. This
partitioning is quickly becoming very important as the trend
toward virtualization continues, and an increasing number of
companies are providing service to many customers by splitting
a physical server into multiple virtual servers.

The Internet Engineering Task Force (IETF) is currently in the
process of developing an architecture for providing QoS on the
Internet. This effort is referred to as Differentiated Services [6]. An
overview of a possible implementation of DiffServ over IBA has
been described in [12]. In this study the traffic is classified into
several categories and the author proposes that the arbitration
tables of InfiniBand should deal with each category in a different
way, but no attempt is made to indicate how to fill in those tables.
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In this paper, we propose a classification of the different traffic
types with QoS needs that improves the proposal made in [12].
We describe how InfiniBand is able to provide bandwidth and/or
latency guarantees. Besides, we study two different approaches
to distribute the entries of the arbitration table that a connection
requires. The first approach (CENRE) categorizes the requests
based on the exact number of required entries, while the second
approach (CESY) categorizes the requests in the powers that are
divisors of 64. Finally, after a deep study we propose the CESY
approach as a very effective strategy to compute the arbitration
tables to obtain the QoS required by the applications.

The structure of the paper is as follows: Section 2 presents a
summary of the general aspects in the specifications of InfiniBand,
including the most important mechanisms that InfiniBand pro-
vides to support QoS. In Section 3, we present our proposal to treat
the different types of traffic based on its requirements. In Sections 4
and 5 we study in depth how to provide QoS in InfiniBand, study-
ing specifically how to provide bandwidth and latency guarantees.
In Section 6 the performance evaluation is presented. Finally, some
conclusions are given.

2. InfiniBand

The InfiniBand Architecture Specification [9] describes a
System Area Network (SAN) for connecting multiple independent
processor platforms (i.e. host processor nodes), /O platforms, and
I/O devices. The IBA SAN is a communication and management
infrastructure supporting both I/O and interprocessor communi-
cations for one or more computer systems. IBA is designed around
a switch-based interconnect technology with high-speed point-to-
point links.

An IBA network is divided into subnets interconnected by
routers, each subnet consisting of one or more switches, processing
nodes, and I/O devices. IBA switches route messages from their
source to their destination based on forwarding tables that are
programmed with forwarding information during initialization
and after network modification. Routing between different subnets
(across routers) is done on the basis of a Global Identifier (GID)
128 bits long, modeled over IPv6 addresses. On the other hand,
the addressing used by switches is based on Local Identifiers (LID)
which allow 48K endnodes on a single subnet, the remaining 16K
LID addresses being reserved for multicast.

IBA links are bidirectional point-to-point communication
channels, and may be either copper cable, optical fiber or printed
circuit on a backplane. The signaling rate on the links is 2.5 GHz in
the 1.0 release, the later releases possibly being faster. The physical
links may be used in parallel to achieve higher bandwidth. The IBA
specification defines three link bit rates. The lowest one is 2.5 Gbps
and is referred to as 1x (only one link at 2.5 GHz). Other link rates
are 10 Gbps (referred to as 4x) and 30 Gbps (referred to as 12x)
that correspond to 4-bit wide and 12-bit wide links, respectively.
Currently, there are also versions 12x DDR (60 Gbps) and 12x QDR
(120 Gbps). The width or widths that will be supported by a link is
vendor-specific.

Messages are segmented into packets for transmission on links
and through switches. The packet size is such that after headers are
considered, the Maximum Transfer Unit (MTU) of data may be 256
bytes, 1 KB, 2 KB or 4 KB. Each packet, even those for unreliable
datagrams, contains two separate CRCs, one covering data that
cannot change, and another one covering data that changes in
switches or routers, and it is recomputed.

The IBA transport mechanisms provide several types of
communication services between endnodes. These types are
connections or datagrams and both can be reliable (acknowledged)
or unreliable.
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Fig. 1. Virtual lanes in a physical link.

IBA management is defined in terms of managers and agents.
While managers are active entities, agents are passive entities
that respond to messages from managers. Every IBA subnet must
contain a single master subnet manager, residing on an endnode
or a switch, which discovers and initializes the network.

2.1. IBA support for QoS

Basically, IBA defines three mechanisms that permit QoS to be
supported: service levels (SLs), virtual lanes (VLs), and virtual lane
arbitration for transmission over links. IBA defines a maximum of
16 SLs, but it does not specify what characteristics the traffic of
each SL should have. Therefore, it depends on the implementation
or on the administrator how to distribute the different existing
traffic types among the SLs. By allowing the traffic to be segregated
by category, we will be able to distinguish between packets from
different SLs and to give them a different treatment based on their
needs.

IBA ports support VLs, providing a mechanism for creating
multiple virtual links within a single physical link. A VL represents
aset of transmit and receive buffers in a port (Fig. 1). IBA ports must
support a minimum of two and a maximum of 16 VLs (VLg...VL;s).
All the ports support VL;s, which is reserved exclusively for subnet
management, and must always have priority over data traffic in
the VLs. The number of VLs used by a port is configured by the
subnet manager. Since systems can be constructed with switches
supporting different numbers of VLs, packets are marked with a
SL, and a relation between SL and VL is established at the input of
each link by means of the SLtoVLMappingTable. Each VL must be an
independent resource for flow control purposes.

When more than two VLs are implemented, the priorities of the
data lanes are defined by the VLArbitrationTable. This arbitration
is only for data VLs, because VL5, which transports control traffic
always has priority over any other VL, as previously stated.

The structure of the VLArbitrationTable is shown in Fig. 2.
Each VLArbitrationTable consists of two tables, one for delivering
packets from high-priority VLs and another one for low-priority
VLs. However, IBA does not specify what is high and low
priority. Both arbitration tables implement weighted round-robin
(WRR) [11] arbitration within each priority level. Up to 64 table
entries are cycled through, each one specifying a VL and a weight,
which is the number of units of 64 bytes to be sent from that VL.
This weight must be in the range of 0 to 255, and is always rounded
up in order to transmit a whole packet.

A LimitOfHighPriority value specifies the maximum number of
high-priority packets that can be transmitted before a low-priority
packet is sent. More specifically, the VLs of the High-Priority table
can transmit LimitOfHighPriority x 4096 bytes before a packet from
the Low-Priority table could be transmitted. If no high-priority
packets are ready for transmission at a given time, low-priority
packets can also be transmitted.
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Fig. 2. VLArbitrationTable structure.
3. Traffic classification

Pelissier proposed in [12] a traffic classification for the different
traffic flows. This classification is based on the applications’
requirements. We have assumed this classification, and we
have introduced slight modifications that are described in [1].
Specifically, the categories we have considered are the following:

e DBTS (Dedicated Bandwidth Time Sensitive). This category
includes the kind of traffic that needs both a mean bandwidth
and also a guaranteed maximum delay. Example of this kind of
traffic are the video-conference or the interactive audio.

e DB (Dedicated Bandwidth). This category includes traffic only
requiring a guarantee of mean bandwidth. Usually, this kind
of traffic is not very sensitive to the latency. Thus, it is not
necessary to provide it with any guarantee in this sense. An
example of this class of traffic is the video visualization from
a server.

e PBE (Preferential Best-Effort). This category embraces all kinds
of traffic that do not need explicit guarantees in maximum
latency nor minimum bandwidth, but it is desirable to provide
it with a better treatment than other best-effort traffic. This is
the case, for example, of web traffic or the traffic accessing a
database. It is useful for this kind of traffic to have priority over
the rest of the traffic without guarantees in order to improve its
behavior.

e BE (Best-Effort). This kind of traffic does not need any type
of bandwidth guarantees nor maximum latency. Usually it is
enough to guarantee that, sooner or later, it will reach its
destination. This task is usually carried out by the upper levels
of the software architecture. In current networks, most of the
traffic is usually of this type. As an example of this category, we
can mention the transfer of files, printing services, etc.

e CH (Challenged). This kind of traffic is intentionally degraded so
that it does not interfere with any other traffic type. An example
of this kind of traffic is any type of activity of backup in a server.
It is important that these activities are not carried out when
there is any other type of traffic in the network. It may be a
good idea to perform these tasks at night when no other traffic
is using the network.

Pelissier proposed the categories DBTS, DB, BE, and CH. We
proposed splitting up the BE traffic into PBE and the usual
BE in order to provide different treatments for these kinds of
applications that must be served without guarantees, without
aiming at the same level of performance.

In our earlier papers, we agreed with Pelissier in devoting the
high-priority arbitration table of InfiniBand to the DBTS traffic,
and the low-priority arbitration table to the remaining categories.
However, in [ 1] we pointed out that this proposal was problematic.
If the sources generating DBTS traffic send packets exceeding the

bandwidth previously requested, all the traffic using the low-
priority table will be affected. Specifically, if we cannot guarantee
that all the sources will have a behavior according to what they
previously requested, no guarantees can be given to the traffic
using only the low-priority table.

This behavior is caused because the LimitOfHighPriority value
does not permit a “fine-grain” distribution of the bandwidth. As
we mentioned above, this limit can have a value between 0 and
255. Specifically, the VLs in the high-priority table can transmit
LimitOfHighPriority x 4096 bytes before having to transmit a low-
priority packet. In the best case, for the largest packet allowed in
InfiniBand (4096 bytes), this means that for a LimitOfHighPriority
of 1 we could transmit traffic, 50% coming from the VLs in the
high-priority table, and the other 50% coming from the VLs in the
low-priority table.

It is evident, therefore, that in order to provide guarantees for
any kind of traffic, the VLs used by this traffic must be included
in the high-priority table. Specifically, we propose to place in the
high-priority table of InfiniBand the VLs used for DBTS traffic,
but unlike Pelissier’s proposal, also the VLs used for DB traffic.
Thus, we propose to leave the low-priority table for traffic flows
without explicit guarantee requirements, which are PBE, BE, and
CH. Furthermore, the bandwidth distribution will be performed
when the connections are established.

4. Providing QoS in InfiniBand

In this section we will review the way we propose to guarantee
applications’ requirements [5]. As far as we know, nobody has
proposed a different method to fill in the IBA arbitration table to
provide applications with QoS. Obviously, our proposal is based on
the mechanisms provided by the InfiniBand specification. When
a host wants to establish a new connection it must decide which
characteristics of mean bandwidth and maximum delay it wants
to request from the network. Using this request, our methodology
performs a resource reservation. This outline is similar to what
is done with the RSVP protocol [7]. Therefore, the QoS guarantee
can be carried out in two senses: Bandwidth guarantee and/or
maximum latency guarantee. To provide these guarantees the
applications must use the Reliable Connection Service of the
InfiniBand Transport Layer.

Specifically, the requesting host sends a message with its QoS
requirements asking for a new connection. Depending on the
network model used, this requesting message will have a different
destination. We are going to assume a distributed control model
where the switches have enough complexity to perform this task
themselves. This approach agrees with the InfiniBand specification
where the local agents are able to perform that task. The requesting
message is therefore sent through the destination host, and is
analyzed in each switch to be found in the path toward the
destination host. However, in a centralized control model the
switches cannot perform this task. In this case, this task should
be performed by the subnet manager. So, the requesting message
would be sent to the subnet manager that would study the request
and the path to establish the connection. The subnet manager
should have the necessary structures to store and to manage
the information of each switch and host in the network. In the
following we are going to study the distributed model, where each
intermediate switch can take its own decisions. However, all the
analysis carried out here is applicable to the centralized model
where the subnet manager performs this admission task.

Using the distributed admission model, the message requesting
a new connection travels through the network. This requesting
message contains the requirements necessary for the connection
to be established. This message travels through the network up
to the target host or up to the intermediate switch where the
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requirements are denied. This request is then studied in each
intermediate switch and is forwarded toward the next switch in
the path. If the request cannot be accepted in some intermediate
switch or at the target host, it is rejected and an informative
message is sent back to the predecessor switches in the path and
to the source host.

We have considered two possible requirements that are
bandwidth and maximum end-to-end delay. Obviously, both must
be studied. We are, therefore, going to analyze separately how to
achieve guarantees for both objectives. Finally, we will study how
to treat both of them at the same time.

4.1. Bandwidth guarantee

In a distributed network admission model we can assume that
both switches and hosts know the bandwidth previously reserved
for other connections. Thus, it is easy to check if the bandwidth
request can be accepted or must be rejected. The accumulated
bandwidth must be added to the bandwidth requested by the new
connection. If this value is lower than the maximum bandwidth of
the link, the requested bandwidth could be accepted.

According to the InfiniBand specification, a weight of one unit
in the arbitration table permits the transmission of a block of 64
bytes. We know the link speed and the mean bandwidth requested
by the connection, and so we can easily compute the weight that a
connection must have in the arbitration table. The whole process
is explained in depth in [2].

However, while performing the previous weight computation,
we must carry out a rounding up. We would then be giving each
connection more weight which it needs. Thus, if we perform
this computation regarding each connection in an individual way,
repeated rounding up accumulates, and this would fill in the
arbitration table with connections that do not use up the real
bandwidth. However, to solve this problem, we will perform this
calculation in a different way. We will compute the weight for a
certain entry of the table based on the bandwidth that must be
satisfied by the connections using this entry. In this way, we waste
nothing with the rounding up, because each time a new connection
using the same entry is accepted, we will recompute the weight for
that entry, but now taking into account the new total bandwidth
accumulated for this entry.

This proposal forces us to create a new structure in each port
with the capacity to store this information. Specifically, we need
to store a floating point value for each entry of the high-priority
arbitration table. Assuming a floating point takes up 8 bytes, and
as each high-priority arbitration table could have up to 64 entries,
a total of 64 x 8 = 512 bytes per switch port or host interface are
needed. Note that this structure is only needed for the high-priority
table, because the low-priority table will not be modified based on
the bandwidth.

4.2. Delay guarantee

We perform the treatment of the latency distributing the total
bounded maximum delay among the switches on the path, also
taking into account the flying time on the links. Thus, the study in
each intermediate switch is easier and we also guarantee the same
treatment in all of them, which we consider to be highly desirable.

In [1] we have studied how to perform this check. Each
switch can compute the maximum number of packets that can
be transmitted before one packet of a certain VL is transmitted.
To do that, we must take into account the number of ports the
switch has, the number of VLs per port, and the input and output
buffer size. This computing also depends on the structure of the
crossbar (multiplexed or full-crossbar) and the maximum packet
size allowed. Besides, the behavior of the output port virtual line

arbitration table must be taken into account. To be able to achieve
the latency requirement the connection might have to use several
entries in the arbitration table of the output port of the switch.
These entries must have a certain maximum distance between
them in order to guarantee the maximum number of packets
that can be transmitted before one packet of that VL is actually
transmitted. Knowing the maximum number of packets that can
be transmitted before a packet of a certain VL and the link speed,
it is easy to compute the maximum time that can be spent waiting
for a packet to be transmitted from a switch. To find more details
of how this computing is done the reader can consult [1].

Having assured this maximum distance between two consecu-
tive entries devoted to the VL used by the connection, there will
be a guarantee of the amount of information from other VLs (max-
imum time) that can be transmitted before one of its packets is
transmitted.

4.3. Providing guarantee of bandwidth and delay at the same time

A connection, therefore, could request a certain mean band-
width of BMbps and a bounded end-to-end delay of t milliseconds.
This request will be treated in each node as a request of a certain
weight w and a maximum distance d between any consecutive pair
in the arbitration table.

Therefore, the total number of entries used by the connection
in the high-priority arbitration table of the output port of the
switches it crosses will be the maximum between these two
values: the entries needed due to the bandwidth requirement ( %)
and those resulting from the requirement of maximum distance
between any consecutive pair in the table.

If several connections requiring the same distance between two
consecutive entries share a sequence of entries in the table, all of
them will, obviously, use the same VL. As mentioned earlier, the
weight that each one of these entries of the sequence has will
be based on the accumulated bandwidth for all the connections
sharing that sequence of entries.

When a node is studying the maximum distance between two
consecutive entries in the table, it must look for an available
sequence of entries in the table to be used for that connection.
Specifically, we have three possibilities:

e We can use an already used sequence with the same maximum
distance (the same VL), but only if it has available weight. For
a sequence of entries with maximum distance d, we have %4
entries in the table, each one with a maximum weight of 255.
%g, 51515e total weight that can be accumulated in this sequence is

X

ql“herefore, each node will have a requirement table with the
sequences of entries of the arbitration table already assigned
and the bandwidth accumulated. If there is already a sequence
in the arbitration table of the same distance as that requested,
we will try to use its entries. Specifically, if the needed weight
for the accumulated bandwidth of all the connections sharing
the sequence, including the bandwidth requested by the new
connection, does not exceed the limit for this sequence, this
new connection can use the already established sequence.
Obviously, we must recompute the weight of the entries of
the sequence with the new bandwidth accumulated by the
connections that are using it.

e There are one or more sequences in the high-priority arbitration
table with the same maximum distance as that requested by the
new connection, but none of them can be used. The reason is
that the accumulated weight for their entries does not permit
us to place this new connection there because the maximum
weight would be exceeded.

e There is no previously established sequence for this distance in
the high-priority arbitration table.
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The first case is very easy, and we only need to recompute the
weights of the sequence of entries. The other two cases require
to find a new free sequence of entries in the table. Besides, this
searching should be performed in an efficient way.

5. Looking for a new sequence of entries in the arbitration table

As was stated at the end of the previous section, in order to
be able to guarantee the demand of a new connection request,
in some situations we need to find a sequence of free entries in
the arbitration table. One aspect that has great importance for the
complexity of the searching method is the distance between two
consecutive entries that form the sequence of entries. Depending
on the election made, we could have very different searching
methods with different complexity order. Besides, depending
on the selected method, the later management of the requests
(insertion of new requests and release of requests already situated
in the table) will be more or less complex.

As was previously stated, the high-priority arbitration table has
64 entries that must be assigned to some requests with certain
requirements for the distance between two consecutive entries of
the same sequence. Thus, it is the bounded delay which will mark
the separation between the entries of the sequence.

We say a connection request is of type d if it needs a maximum
distance d between two consecutive entries of the sequence that
its VL uses in the arbitration table of the switch output ports’. So,
a connection request of type 15 needs a separation between two
consecutive entries of maximum 15 units. One connection of type
8 requires that two consecutive entries be situated at a maximum
separation of 8 units. As the arbitration table has a cyclic behavior,
a connection request of type d needs f%} (rounding up function)
entries of the arbitration table.

According to the InfiniBand specification, all traffic of the same
VL is going to receive the same treatment in the arbitration
table. This is because the arbitration process is based on the
output VL of the port or interface. Note that the selection of the
VL for a packet depends on the SL indicated in its header and
the SLtoVLMappingTable. So, the application is going to mark the
packet with a certain SL based on the characteristics of the traffic
generated. The VLs in the switches of its path up to its target will
be selected based on the SL that has been put in its header.

On the other hand, in our previous works [5] we considered
categorizing the traffic of the different applications based on its
mean bandwidth requirements. We did that independently of the
needs that they have of bounded end-to-end delay, and thus, of the
maximum separation between two consecutive entries in the high-
priority arbitration table. This forced us to join in the same SL, and
thus in the same VL, connections having a very different deadline
requirement, but a similar mean bandwidth requirement.

Using this grouping criterion we must give to all the traffic
of the VL the same treatment regarding delay as the most
restrictive connection requires. Note that the maximum distance
between two consecutive entries in the sequence is not the unique
distance that can be accepted. Any lower separation would also be
acceptable. The problem is what to do when this most restrictive
connection finishes and its requirements in the arbitration table
must be released. There are basically two options:

e To do nothing and maintain the current situation for this VL.
This would waste resources in the arbitration table, because
we are dedicating more entries to this VL than the remaining
connections really need.

1 as type of connection and distance have the same value and meaning for a
certain connection, in the following we are going to use both terms synonymously
to refer to the same concept.

e To modify the entries of the arbitration table so that this VL
receives the treatment of the remaining new most restrictive
connection using the VL. However, this option is very problem-
atic. We need to store all the information of the connections that
each port is managing. Without this information it would be im-
possible to know which is the next most restrictive connection.
This option is clearly not viable, because we would need to store
information, taking up a lot of space.

Both alternatives pose too many problems to be considered
further. To solve this problem a solution would be to use different
VLs for the different traffic flows for which we want to provide
a different treatment. Therefore, our proposal is to segregate
the traffic so that all the connections that share a VL have the
same maximum distance requirement in the arbitration table.
In this way, it is not necessary to keep any kind of additional
information regarding the established connections, because all
the connections that share that VL will have the same maximum
distance requirement between two consecutive entries. When a
connection finishes we discount the bandwidth that it requested in
its establishment, and we recompute the weight of the entries with
the bandwidth accumulated by the remaining connections using
the sequence of entries. When the bandwidth accumulated is zero,
this means that there are no connections accumulated using that
sequence of entries, and so it can be released.

Obviously, for a table of 64 entries there can be 64 different
distances requested, and so 64 possible types of requests. As the
number of SLs and VLs is limited, at most they can be used for as
many types of requests as these values indicate. According to the
InfiniBand specification, the number of SLs is 16, and the number
of VLs can be 16, 8, 4, or 2, depending on the implementation. It
is, therefore, the number of VLs that will impose the maximum
number of different types of applications, and also the distances
to be considered. Besides, some SLs and VLs must be devoted to
the traffic that does not require QoS.

In the following, we are going to determine the set of different
distances to be considered. We will present two alternatives that
are based on different criteria, and finally we will select one of
them. The first one is called CENRE and consists in grouping the
distances requiring exactly the same number of entries. The second
one is called CESY and considers the symmetry to establish the
different types of requests.

5.1. Categorization based on the Exact Number of Required Entries:
CENRE

According to the size of the table, there can be 64 different types
of request, and therefore, some grouping criterion must be applied.
However, many of the 64 possible types of distance need the same
number of entries in the table, and so they could be grouped
together and given the same treatment. Thus, specifically we could
have the following 15 different types of maximum distance:

e Requests with low latency requirements only need one entry in
the table, and so the requested maximum distance is 64.

e Requests of distance in the range [32, 63] require 2 entries in
the table, and so all of them can be treated as if they were of
distance 32.

e Requests of distance in the range [22, 31] need 3 entries in the
table, and so all of them can be treated as if they were of distance
22.

e Requests in the range [ 16, 21] need 4 entries and can be located
as requests of distance 16.

e Requests in the range [13, 15] require 5 entries, and so they can
be treated as if they were of type 13.

e Requests of distance in the range [11, 12] both need 6 entries.
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e Only requests of distance 10 need 7 entries. These requests
cannot therefore be grouped with other requests with different
distance requirement without using more entries than those
strictly necessary.

e Both types of requests in the range [8, 9] require 8 entries.

e Only requests of distance 7 need 10 entries. These requests
cannot therefore be grouped with other requests with a
different distance requirement without using more than the
necessary entries.

e The same happens with the requests of distance 6 that need 11

entries.

Only the requests of distance 5 require 13 entries.

Only the requests of distance 4 need 16 entries.

Only the requests of distance 3 need 22 entries.

Only the requests of distance 2 require 32 entries.

Finally, a request of distance 1 would need all entries of the

table, which is non-viable and so we will not consider this

distance.

Summing up, in some cases by changing a distance into a lower
one, the distance between two consecutive entries is the same.
This is helpful because it could simplify the later management
of the requests. Specifically, this happens when the grouping is
performed in a distance which is the divisor of the total number
of entries of the table. Thus, the grouping where the maximum
distances considered are 64, 32, 16, 8, 4, and 2, permits us to
maintain the same distance between two consecutive entries of the
sequence. However, in the other cases it is not possible for any pair
of consecutive entries to have the same distance.

5.1.1. Selecting the sequence

Anyway, we must select exactly which entries are going to be
used to meet a certain request, whatever their distances. For the
distances previously shown, many algorithms are possible to locate
a request in the table. Note that, in general, the only necessary
condition to be able to locate a request of distance d in the table is
that a sequence, of length equal to or bigger than d, of consecutive
fulfilled entries does not exist in the table.

The CENRE approach uses the minimum number necessary of
entries. So, a request of type 8 would need (%1 = 8 entries (for
example the entries 2, 10, 18, 26, 34, 42, 50, 58). While a request of
type 15 would need f%l = 5 entries (for example, the entries 1,
16, 31, 46, 61).

As has been previously indicated, our goal is to achieve an
optimal situation for the requests in the table, maximizing the
number of requests that can be met. We must therefore take into
account three essential criteria: the request type, the number of
requests, and the arrival order of the different requests. The arrival
order is important because the decision for locating a request must
be made when the request is made with the information that the
process has at that moment. Depending on the selected positions,
other requests could, or could not, be located later.

As we can observe, the entries of the first example (the request
of type 8) are situated in a symmetric way in an arithmetic
progression with difference 8. On the other hand, the entries of
the second example (the request of type 15) loses its symmetry
in the last entry because between the entries 61 and 1 (with the
cyclical behavior of the table) the distance is not 15, but 4. For
this second case, we have another possibility of distributing the
5 entries along all the arbitration table with a distance lower than
15. So, for example, another valid sequence for this request could
consist of the entries 1, 14, 27, 40, and 53. In this case all the entries
have a separation of 13, except the last one having only a separation
of 12. This case corresponds to the grouping shown in the previous
section, where we saw that the requests with distances in the range
[13, 15] could be treated as if they were of distance 13 using 5

1: mazx = 64 // Size table

2: tlmazx] // IBA table

3:t=0 /I All free entries

4: free_entries = max // Number of free entries

5: group=0 // Number of consecutive reserved entries

Fig. 3. Necessary definitions for the algorithms implemented.

entries. Clearly, more possibilities to locate a request of type 15 are
possible.

As we can see, following the CENRE approach there are a lot of
possibilities to locate this request. The best choice is to obtain a
method optimizing the number of locations. So, when a request
is located in the table it should leave as many free holes? as
possible. Besides, the remaining free entries of the table should
be in the most convenient positions in order to later locate other
requests. Thus, the algorithm that optimizes the location is that
which allows the placement of the most restrictive request in the
next step. Obviously, the most restrictive request is that which
needs the lowest maximum distance, and as a consequence the
largest number of entries in the table.

Logically, the most restrictive request is the one of type 1 that
needs all the entries in the table, but we have already indicated
that this type is not realistic and so we are not going to consider it.
Thus, the most restrictive request that we consider is of type 2, that
needs 32 entries in the table, all of them situated at a maximum
distance of 2 units from its neighbors in the sequence. The next
most restrictive is the request of type 3 that needs 22 entries, and
so on. Therefore, to be able always to put in the most restrictive
request (type 2) without using more entries than those strictly
necessary, the CENRE approach must always use first the even
entries and when these run out, the odd, or vice-versa. Thus, we
keep enough entries with the correct separation to be able to admit
a later request of type 2. It is clear that the same criterion must
be applied in order to maximize the number of entries of greater
distances.

Of course, another possibility is to use more entries than
those necessary and modify the distance between two consecutive
entries when necessary. For example, let’s suppose the entry
number 20 is occupied by a previous request and we want to meet
arequest of distance 2. In this case, we could use the sequence..., 16,
18,19, 21, 23, ..., if these entries are free. Obviously, this increases
the number of entries that we are using, and complicates the later
management of the table.

In order to perform the comparison of Section 5.3, we have
implemented the CENRE approach. The necessary definitions
for this implementation are shown in the Fig. 3, and an
implementation of the CENRE approach is shown in Fig. 4.

In the proposed implementation, given a request of type d, first
of all the number of necessary entries for attending a request of
type d is obtained by means of the function Obtain. Then, all the
possible free entry sequences are explored, and the entry sequence
generating the largest set of free consecutive entries is selected.
Once the best sequence is selected, the variables and the table
entries are updated.

The implementation we propose for the CENRE approach
follows two criteria to select the entries:

e The selected sequence leaves the smallest group of consecutive
occupied entries in the table. In this way, it is later possible to
meet the most restrictive request possible.

e If there are some sequences meeting the previous criterion,
the sequence maximizing the smallest of the free groups of
consecutive entries is selected.

2 Set of free consecutive entries.
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1: Begin Procedure CENRE ( ibatable t, requests d)

2: entries = Obtain(d)  // Obtain the number of entries to attend request d
3: if (entries < free_entries) and (group < d) then

4: [/ It’s sure request d can be attended

5:  // All entry sequence candidates are explored

6: fori=(0tomaz — 1do

7 if t[i] is free then

8 /I Find entry sequence to attend request d

9: Found = FindEntries( t, t[i], entries)

10: if Found then

11: // Obtain the entry group with more consecutive occupied entries
12: greserved = BigGroupReserved(t)

13: // Obtain the entry group with less consecutive free entries

14: gfree = SmallGroupFree(t)

15: {/ Sequence is selected if it is the best

16: best = (greserved < greservedmin) or

((greserved = greservedmin) and (gfree > gfreemin)) or
((greserved = greservedmin) and (gfree = gfreemin) and
(entries < entriesmin))

17 if best then

18: greservedmin = greserved
19: gfreesmin = gfree

20: entriesmin = entries

21: end if

22: end if

23: end if

24:  end for

25:  group = greservedmin

26:  entries = entriesmin

27:  free_entries = free_entries - entries

28:  Update( t, t[i], entries) // Reserve entries for request d
29: end if

30: End Procedure CENRE

Fig. 4. Animplementation of the CENRE approach.

Obviously, this algorithm is close to the optimum according to
its capacity to locate requests in the table. The algorithm selects
a new correct sequence if there are enough free entries in the
table and there is no occupied sequence of entries greater than the
distance requested. It is clear that in some cases this algorithm can
use more entries than those strictly necessary. When the first entry
of the sequence has been fixed, the others are selected following
the distance requested, or the divisor of 64 that uses the same
number of entries. For example, for a request of type 53, that
needs 2 entries in the table, the latter are going to be met with
a distance of 32. This is because the same number of entries is
used, and in this way the distance is distributed equitably on the
table. Following this distance the next entries of the sequence are
selected, but if any of the following entries matches an occupied
entry, the algorithm tries to use the previous one. If this is also
occupied, the algorithm tries to use the second previous one, and
So on.

5.1.2. Management issues

As we know, in the CENRE approach the possible distances can
be grouped in 14 different categories. As all the traffic of the same
SL uses the same VL, and therefore receives the same service, we
are going to use a different SL for each one of the 14 different
distances considered. In this way, there are still 2 remaining SLs
that can be used for the traffic without QoS guarantee. For example,
we could devote one of them to the PBE and BE traffic, and the other
one to the CH traffic.

If we have 16 VLs then a different VL can be used for each
SL. However, if we have less than 16 VLs some criterion must
be chosen to join traffic from different SLs into the same VL. In
this case, this traffic is going to receive the treatment of the most
restrictive SL of all that share the VL. This is another decision

about grouping maximum distances, and so fewer distances than
14 would be considered.

Another very important consideration to be taken into account
to select a method for locating a request in the table is the later
management of these requests. Obviously, first of all an algorithm
is needed to locate a request of a certain distance in the table.
That algorithm must be quick and able to make a good use of the
available entries. As was stated, in order to do that, the algorithm
should always leave the biggest possible holes in order to meet
other later requests. Specifically, decreasing the lowest of the
available holes must be avoided.

Furthermore, some information must be stored to be able to
release the used entries when a connection finishes. We should
try to make sure that the information needed for this task is the
smallest amount possible. This is because we would need the data
structures for that, and the number of connections met could be
very large. If the variation of the distance between two consecutive
entries of the sequence is allowed, it would be necessary to store
specifically the entries which form the sequence in order to be
able to release them when the connection finishes. However,
if the sequence always keeps the same distance between two
consecutive entries, the task is easier because it is only necessary
to store the first entry and the separation of the sequence. It is
therefore this characteristic that leads us to another way to classify
the distances, and therefore the requests.

5.2. Categorization based on Entries SYmmetry: CESY

As has been indicated at the end of the previous section, con-
sidering the same distance between every couple of consecutive
entries of the sequence can simplify the selection process and the
later management of the entry sequence of entries. In this way, the
CESY approach distributes the entries of the table according to an
arithmetic progression, with the difference of the progression be-
ing the distance requested by the connection.

The arithmetic progressions that are symmetric in a table of 64
entries (2°) are those which have, as difference of the progression,
the divisors of 64. As 64 is a power of 2, the divisors are the power
of 2 lower than or equal to 2%, that are 2°, 21, 22, 23, 24, 2 and 25.
These values represent requests of type 1, 2,4, 8, 16, 32, and 64. The
request of type 64 is when the request does not have any deadline
or it is long enough. As was stated, request of distance 1 will not be
considered.

With the CESY approach any request will be reduced to the
corresponding power of 2 immediately below. Thus, a request of
distance 11 is going to be treated as if it were of distance 8. Another
request of distance 45 would be treated as if it were of distance
32, and so on. Let us analyze the possible situations, indicating the
changes made and the consequences of this transformation:

e All the requests with distances between [32, 63] can be treated
as if they were of type 32 because all of them need 2 entries. A
request of type 32 can be located in a uniform and symmetric
distribution with 2 entries separated between them for 32
units (an arithmetic progression of difference 32). In this way,
locating them symmetrically with distance 32, we are treating
the request as if it were of distance 32. This change does
not affect the connections and we leave the table in a better
situation to locate later other requests.

e For the requests with distance in the interval [16, 31] several
cases can be considered. The requests with distance between
16 and 21 need 4 entries, and by treating them as a request of
type 16 as in the previous case, no unfavorable situation arises.
However, for the requests between 22 and 31 it will be enough
with 3 entries to satisfy their demand, but we are treating them
as if they were of type 16 using one additional entry to those
necessary.
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Table 1

Each one of the 63 distances considered, the categorization based on the power of
2 using the CESY approach, and the number of entries used more than those strictly
necessary.

Maximum distance needed Treated as Exceeding entries used
2 2 0
B 2 10
4 4 0
5 4 3
6 4 5
7 4 6
8,9 8 0
10 8 1
11,12 8 2
13, 14, 15 8 3
16, ...,21 16 0
22,...,31 16 1
32,...,63 32 0
64 64 0

e For the requests with distance in the interval [8, 15] we have

the following situations:

- Requests of type 8 and 9 need 8 entries.

- Request of type 10 needs 7 entries (one fewer than if we treat
it as a request of distance 8).

- The ones of distance 11 and 12 need 6 entries (two fewer).

- The ones of type 13, 14, and 15 need 5 entries (three fewer).

As can be seen, in some of these situations this approach

uses more entries than those absolutely necessary. For
example, changing the requests of type 13, 14, and 15 to a
request of type 8, we are using 3 entries more than necessary.

e Requests in the interval [4, 7] are turned into requests of type 4
with 16 entries. However, the really necessary entries are:

- Requests of type 5 need 13 entries (3 fewer).
- Requests of type 6 require 11 entries (5 fewer).
- Requests of type 7 need 10 entries (6 fewer).

e Finally, the most restrictive requests are in the interval [2, 3],
where the request of type 3 (that could be located only with 22
entries) is turned into a request of type 2, and so requires 32
entries. In this case, the request would be using 10 entries more
than necessary.

Summing up, all cases are shown in the Table 1. As can be
seen, the most restrictive requests are a problem for the CESY
approach. However, according to the delay requirements of current
applications and the technology used, these more restrictive
distances will be precisely the least demanded. In fact, today’s
applications tolerate latencies in the order of tens or hundreds of
milliseconds [ 13]. These latencies imply distances bigger than 32 in
most cases, even for a very long path crossing a lot of switches [8].
Thus, it seems that the distances most used in practice will be those
in which this proposal uses up fewer entries, and thereby, making
better use of the table.

5.2.1. Selecting the sequence

As we have indicated previously, if the CESY approach is used,
the fact that the distance between every consecutive couple of
entries of the sequence is the same simplifies the process to locate
a certain request and the requests made later. Besides, dealing
with a power of 2, the process is easier. So, the algorithm that can
be implemented has a reduced complexity. When there is a new
request of maximum distance d = 2!, we must find a group of %4
entries in the table such that two consecutive entries are separated
at a maximum distance of d.

We have implemented a version of this algorithm, which is
shown in the Fig. 5. The CESY approach is able to meet any request
in the table if there are enough free entries. This is because the
algorithm leaves the free entries situated in such a way that the
most restrictive possible request can later be located, as is proved
in[3].

: Begin Procedure CESY (ibatable t, requests d)
: entries = Obtain(d)  // Obtain the number of entries to attend request d
. if entries < free_entries then
// It’s sure request d can be attended
first = FindFirst(t, d)  // Find the first entry for request d
Update( t, first, entries) // Reserve entries for request d
free_entries = free_entries - entries
end if
: End Procedure CESY

0 B0 O AR K

Fig. 5. Animplementation of the CESY approach.

The order in which the entries are examined has as objective to
maximize the distance between two free consecutive entries that
would remain in the table after carrying out the selection. In this
way, the table remains in the optimum conditions to be able to
meet later the most restrictive possible request.

In the proposed implementation, given a request of type d, the
number of necessary entries to attend it is calculated using the
function Obtain. The function FindFirst finds the first free entry in
the table using an efficient search algorithm, trying to maximize
the distance between two free consecutive entries that would
remain in the table after carrying out the selection. In this way, the
table remains in the optimum conditions to be able to meet later
the most restrictive possible request. The function Update is used
for reserving all entries needed to attend the request d. At the end,
the number of free entries is updated.

5.2.2. Management issues

Using the CESY approach we could have a SL for each distance
used (2, 4, 8, 16, 32, and 64). Besides, the SLs that are considered
to have more connections (the ones with bigger distance) could
be split up into some SLs now based on their mean bandwidth.
Therefore, we are leaving the other SLs for the traffic without QoS
guarantees (PBE, BE, and CH) and for the control traffic.

If there are enough VLs we can devote a different VL to each SL
that we have just proposed. But, if there are not enough VLs then
the SLs with the same maximum distance should be joined in the
same SL. However, SLs with different maximum distance cannot
be joined in the same VL, because we will then again require the
features of each connection in order to use this information when
the connections end, and this option has already been discarded.
We would thus need a minimum of 8 VLs: 6 for the 6 distances
allowed, another for the PBE, BE, and CH traffics, and yet another
for the control traffic.

However, if we have fewer than 8 VLs per port, we must
consider using fewer values for the maximum distance allowed.
For example, if we have only 4 VLs, we would use one of
them for the control traffic and another for the traffic without
QoS requirement. The other two VLs could be used for the two
maximum distances that we would want to consider. For example,
we could use the distance with separation 64 (for the DB traffic and
for the DBTS traffic with very low latency requirement) and the
distance 16. The requests with lower distance should be rejected
because it is not possible to admit them. Besides, the requests of
distance 32 should be turned into requests of distance 16.

Furthermore, the CESY approach has another advantage, which
allows us to make the later management of the requests easier,
both to locate other new requests and to release a previously
located request from the table. As all the consecutive entries of the
sequence keep the same distance, we only need to know which is
the first entry of the sequence and the distance between them.

5.3. Comparing both models

As we have already indicated, with the CESY proposal, in some
cases we are using more entries in the table than those absolutely
necessary. However, the CENRE approach can also use more entries
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than those strictly necessary. We are going to compare both
models on the basis of the number of entries improperly used, and
their complexity, taking into account their implementation and
management. This comparison will serve to select one of them.

We have implemented the algorithm CENRE shown in the Fig. 4.
As was stated, the CENRE approach is able to meet any request of
distance d if there is no sequence of fulfilled entries greater than d
in the table. This assumes that in some cases the distance between
two consecutive entries should be modified in order to adapt itself
to the available holes, though always respecting the maximum
distance.

We have also implemented an algorithm for the CESY approach,
which looks for a free sequence of entries in the table that turns
any request in the closest power of 2. This algorithm is shown in
the Fig. 5. This algorithm is able to locate a sequence of free entries
in the table if there are enough free entries [3]. As was stated,
the order in which the entries are examined has as objective to
maximize the distance between two free consecutive entries that
would remain in the table after carrying out the selection. In this
way, the table remains in the optimum conditions to be able to later
meet the most restrictive possible request.

Sequences of requests have been generated in order to try
to meet them in the table using both methods, until the table
is completed. These requests are of a certain distance randomly
generated between 2 and 64, in this case, all of them with the
same probability. If one request cannot be located in the table, it is
discarded and another is generated. In principle, we are interested
in computing how many entries are wasted in both cases. So,
both algorithms use more entries in the table than those strictly
necessary. For the CESY method this is due to the rounding up.
However, for the CENRE approach it is due in some cases to lower
distances being used than necessary because the entry that the
algorithm wants to use is occupied.

According to the results obtained, the CESY approach uses up
on average 8.78 entries, while the supposedly optimum algorithm
CENRE uses up on average 1.96 entries. This results in a difference
between both methods of almost 7 entries, which is significant.

These results have been obtained considering all types of
connections equally probable, which is not very realistic. It is
difficult to compute the real probability of each distance, because
this will depend on the applications, but also on some aspects of
the network (size, diameter, packet size, etc.), and on the switches
(type of crossbar, number of ports, number of virtual lines, etc).
As a simple approximation we have considered establishing the
probability proportionally to the distance. In this way, a request
of distance 64 has twice the probability of a request of distance
32, and 32 times more than a request of distance 2. Using this new
scenario the test has been repeated. In this case, the CESY approach
wastes on average 5.68 entries. On the other hand, the CENRE
proposal wastes 0.86 entries. Therefore, the relative difference
between them has decreased significantly.

It is clear that in real cases these probabilities will be even
more disproportionate, the requests of big distances being more
frequent. Even, for small or medium sized networks, it is quite
probable that the distances lower than 16 are never requested. In
this way, the proposal CESY of rounding to powers of 2 does not
use up a lot of entries of the table, but has other very important
advantages.

Another topic is the complexity of the filling-in algorithm.
Obviously, the decision must be made based on the information
the algorithm has when the request is made. Later requests are
unknown at that moment. Regarding the CENRE model, depending
on the decision taken for a request, other requests could be later
met. But, obviously we cannot know which requests we will have
in the future.

As an example, we are going to study the sequence of requests
of distance 45, 8,53, 61, 60, 55, 24, 3, and 9. Each request is located

following the rules previously indicated in the CENRE approach.
As a starting point, the first request (of distance 45) is met in
the entries 32 and 64, thus having a separation of 32. The other
requests are met following those rules. The final table is shown
in Fig. 6(a). We can see that the last request (the one of distance
9) cannot be located because there is a consecutive sequence
of occupied entries greater than 8. Specifically, for the situation
shown in that figure, we have the sequences 28, 29, ..., 36 and
63, 64, 0, 1, ..., 8 that have length equal to or greater than the
distance requested. So, the last request (the one of distance 9)
cannot be met, although there are still enough free entries in the
table (17 free entries). This is because the free entries are situated
with an incorrect separation between two consecutive entries. A
possible solution is to move the requests on the table when new
requests are made.

However, if we know the complete sequence, we can locate the
requests using also the CENRE approach in the correct entries in
order for the other requests to be met. In this case, a possible final
status of the table is shown in Fig. 6(b).

On the other hand, following the CESY approach which turns
requests into powers of 2, these requests can always be met in the
table. Specifically, using this strategy, the final status of the table is
shown in Fig. 6(c). In this case there are still 2 free entries (entries
number 19 and 51) with a distance of 32, that are able to meet a
request later that is turned into that distance. So, in spite of the
CESY algorithm using more entries than those strictly necessary,
the free entries are left in a correct way in order to later meet the
most restrictive possible request. A request, therefore, can always
be located in the table if there are enough free entries.

After this deep study, finally, our proposal is to use the CESY
approach that turns the requests into the lowest closest power of
2.We use up some entries, but we now know that this proposal has
other worthy advantages. In the next section we are going to show
the performance evaluation of this proposal when the network is
very loaded. We will study the results that the applications with
QoS requirements receive. Note that we do not show results using
both categorization methods studied because once the connections
are established, all of them would receive the same treatment in
spite the way they were located. Thus, the only difference between
both approaches is the number of connections they are able to
establish, and it has already clearly been shown that the CESY
approach is much better.

6. Performance evaluation

We have used simulation to evaluate the behavior of our
proposals to provide QoS in InfiniBand. We start explaining the
network and the traffic models we have used, and then we show
the performance evaluation results.

6.1. Network model

We have used regular and irregular networks randomly
generated, obtaining, in all the cases, similar results. Due to the
lack of space, in this paper we are going to show only results for
irregular networks. All switches have 8 ports, 4 of them having
a host attached, and the other 4 are used for interconnection
between switches. We have evaluated networks with sizes ranging
from 8 to 64 switches. As each switch has 4 hosts attached,
we have therefore used networks ranging from 32 to 256 hosts.
Moreover, we have made some preliminary tests using the three
link rates specified in InfiniBand. The results obtained for the
main parameters are similar. This is because the link rate has
no influence on the parameters studied for the QoS. Instead, the
most important parameter is the load reached by the network.
When the load is close to the maximum network throughput,
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Fig. 6. Locating the sequence 45, 8, 53, 61, 60, 55, 24, 3, and 9, (a) and (b) using the CENRE approach, and (c) using the CESY approach.

a correct resource reservation and an accurate arbitration are
critical regardless of link bandwidth. Without a correct arbitration,
packets may suffer delays that could affect their QoS requirements.
Therefore, we will only include in the paper the results for the link
rate of 2.5 Gbps, but the conclusions can be extended to the other
link rates specified in InfiniBand.

Both of input and output ports have 16 VLs in order to permit
each SL to have its own VL. Each VL is large enough to store
four whole packets, and two packet sizes have been considered:
the smallest (256 bytes) and the largest (4096 bytes) allowed in
InfiniBand. Each switch has a multiplexed crossbar. So, only a VL
of each input (output) port can be transmitting (receiving) at the
same time.

6.2. Traffic model

We have used 10 SLs for traffic needing QoS. Each one has
different maximum delay (distance) and bandwidth requirements.
The SLs used are shown in Table 2. For the most demanded
distances, a division has been made based on the mean bandwidth
of the connections. We have used CBR traffic, randomly generated
among the bandwidth range of each SL.

In this paper we have used only CBR traffic because we want
to offer guarantees. Therefore, we require the traffic to have a
constant behavior. However, we also have results for VBR traffic
(without offering guarantees) that are shown in [4]. Those results
show that our proposal is also able to provide QoS to this kind of
traffic, but obviously without guarantees.

The connections of each SL request a maximum distance
between two consecutive entries in the high-priority table and a

Table 2

Features of the SLs used.

SL Maximum distance Bandwidth range (Mbps)
0 2 0.064-1.55

1 4 0.064-1.55
2 8 0.064-1.55
3 16 0.064-1.55
4 0.064-1.55
5 e 1.55-64

6 0.008-0.064
7 0.064-1.55
8 64 1.55-64

9 64-255

mean bandwidth in the range shown in the Table 2. Note that this is
equivalent to requesting a maximum deadline and computing the
maximum distance between two consecutive entries in the virtual
lane arbitration tables, following the CESY approach.

Each request is studied in each node in its path, and it is only
accepted if there are available resources. Connections of the same
SL are grouped in the same sequence of entries computing the total
weight of the sequence based on the accumulated bandwidth of
the connections sharing it. When the connection cannot be settled
in a previously established sequence (or there is not a previous
one), the algorithm looks for an empty sequence of entries in the
high-priority arbitration table with the correct distance between
its entries.

When no more connections can be established we start a
transient period in order for the network to reach a stationary state.
Once the transient period finishes, the steady state period begins,
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Table 3
Traffic and utilization for different network sizes.

Number of switches

8 16 32 64
Delivered traffic (Bytes/Cycle/Node) 0.7557 0.7258 0.7248 0.7227
Average utilization for host interfaces (%) 75.57 72.58 72.48 72.27
Average utilization for switch ports (%) 72.93 73.48 72.66 71.94
Average reservation for host interfaces (Mbps) 1926.85 1848.67 1834.04 1822.41
Average reservation for switch ports (Mbps) 1859.59 1871.75 1827.16 1837.62
Number of established connections 46495 111813 232854 284365

Packets received before threshold (%)
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Fig. 7. Distribution of packet delay for (a) small packet size and (b) large packet size.

where we will gather results to be shown. The steady state period
continues until the connection with a smaller mean bandwidth has
received 100 packets.

Although the results for BE and CH traffic are not the main focus
of this paper, we have reserved 20% of available bandwidth for
these kinds of traffic, that would be attended by the low-priority
table. So, connections would just be established up to 80% of the
available bandwidth.

6.3. Simulation results

We can see in Table 3 the injected and delivered traffic (in
bytes/cycle/node), the average utilization (in %) and the average
bandwidth reserved (in Mbps) in host interfaces and switch ports,
and the number of established connections. In all the cases we
have used the small packet size. Note that the maximum utilization
reachable is 80%, because the other 20% is reserved for BE and CH
traffic. So, we are close to the maximum utilization. Obviously, we
could achieve a higher utilization establishing more connections,
but we have already made many attempts for each SL. Other
connections that we could establish would be of SLs of small mean
bandwidth because the network is already very loaded, and we
think these new connections would not provide us with more
information. So, we think that with this load we can study the
network behavior in a quasi-fully loaded scenario.

Also note that the behavior is quite similar for all network sizes.
Obviously, the number of established connection varies, but in all
the cases the network reaches a high load. However, the network is
not congested and it is able to deliver all the traffic that is injected.
This is due to the accurate arbitration performed at the output
ports and interfaces. As all the network sizes obtain similar results,
in the following we will show only results for the network with 16
switches, and, thus 64 hosts.

We have also computed the percentages of packets that meet a
certain deadline threshold. These thresholds are different for each
connection and are related to their requested maximum deadline,
which is the maximum delay that has been guaranteed to each
connection. In the figures this deadline is referred to as D. The

results for each SL are presented in Fig. 7, for both packet sizes. Note
that results are quite similar for both packet sizes. In these figures
we can see that all packets of all SLs arrive at their destination
before their deadlines. However, the packets of SLs with stricter
deadlines arrive at their destination close to their deadline, but
in time to achieve their requirements. The results are related to
the connection deadlines and so connections with lower latency
requirements have much more time to achieve their deadlines.

We have also measured the average packet jitter. We have
computed the percentage of packets received in several intervals
related to their interarrival time. Obviously, these intervals are
different for each connection. The results for each SL and small
packet size are shown in Fig. 8. For large packet size results are
quite similar. In all cases, we can see that almost all packets arrive
in the central interval [, 4L, For the SLs of the connections
having the smallest mean bandwidth (SLs 0, 1, 2, 3, 4, 6, and 7),
all packets arrive in the central interval. This is because these
connections have a large interarrival time, large enough for all
packets to arrive at their destinations. For the other SLs, with the
biggest mean bandwidth, the jitter has a Gaussian distribution
never exceeding +IAT.

Finally, for a given threshold, we have selected the connections
having delivered the lowest and the highest percentage of packets
before a threshold. In the figures these connections will be referred
to as the worst and the best connections, respectively. We have
selected a very tight threshold so that the percentage of packets
meeting the deadline was lower than 100% in Fig. 7(a). In particular
we have selected the threshold equal to Defgg”e. Note again that this
threshold is different for each connection and it is based on its own
maximum deadline. The results shown in Fig. 9 correspond to the
small packet size and the SLs 0, 1, 2, and 3, which are the SLs with
the highest deadline requirements. The results for the other SLs are
even better than these shown in the figures. We can observe that,
in all cases, even the packets of the worst connection arrive at their
destination before their deadline. We can also see that in all cases
the results are very similar for the best and the worst case. This is
due to the fact that the arbitration tables are set in a correct way
and all the connections receive a good and similar treatment.
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Fig. 9. The best and the worst connection for SLs with the strictest latency requirements.

7. Conclusions

InfiniBand is an industry-standard architecture for server
[/O and interprocessor communication. InfiniBand has some
mechanisms that, properly used, provide QoS to the applications.
In[5], we proposed a new methodology to compute the virtual lane
arbitration tables of InfiniBand for traffic, having both bandwidth
and latency requirements. We evaluated this proposal, obtaining
very good results. However, that proposal had the problem that no
guarantees could be provided to traffic that uses the low-priority
table if sources of traffic using the high-priority one used more
bandwidth that they previously requested.

In this paper, we have presented a new approach that solves this
problem. We treat all kinds of traffic in the same way, grouping
it based on its latency requirements. Besides, all traffic with QoS
requirements uses the high-priority table, and so, all of them have
guaranteed what they have requested. If some source sends more
than it has requested this will only affect the connections sharing
the same VL, but the rest of the traffic in others VLs will achieve
what they requested.

Moreover, we have proposed a novel way to assign the service
levels of InfiniBand to the different traffic kinds. This proposal
takes into account the requirements regarding maximum latency.
Specifically, for a certain maximum latency, the maximum distance
between any consecutive pair of entries in the arbitration table of
the output ports in the switches is computed. We have studied
the different possibilities to treat those maximum distances: the
CENRE approach tries to use the exact number of required entries
and the CESY approach categorizes the requests in the values
that are divisors of 64. After studying both proposals in depth,
we finally select the CESY approach due to its good use of the
free entry sequences. With the CESY approach we are able to
meet any request in the arbitration table if there are enough free
entries because they are always placed to meet the most restrictive
possible request.

Finally, we have tested this new proposal with traffic having
very different requirements. We have used traffic with bandwidth
and latency requirements, varying both of them in a large range. In
all cases, the results obtained are very good, fulfilling the requested
requirements easily. We think these are some important results,
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proving our methodology is very good to achieve QoS in InfiniBand
environments.
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