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Abstract

InfiniBand (IBA) has been proposed as an industry-
standard architecture both for I/0 server and interpro-
cessor communication. IBA employs a switched point-
to-point network, instead of using a shared bus. IBA is
being developed by the InfiniBand®*™ Trade Association
to provide present and future server systems with the
required levels of reliability, availability, performance,
scalability, and quality of service (QoS).

In previous papers we have proposed an effective
strategy for configuring the IBA networks to provide
users with the required levels of QoS. This strategy is
based on the proper configuration of the mechanisms
IBA carries to support QoS. Specifically, our method-
ology configures the InfiniBand Arbitration Tables and
uses the different Service Levels and Virtual Lanes that
are available, in order to segregate the different traffic
flows. Thus, each flow receives the treatment it has pre-
viously requested. Moreover, by using our methodology,
applications can be assured that their requirements will
be satisfied.

In this paper, we review the basis of our methodology
and we study the influence of the packet size on the QoS
guaranteed to the applications.

1. Introduction

The InfiniBand Trade Association (IBTA) [8] was
formed in 1999 to develop a new standard for high-
speed I/O and interprocessor communication. Infini-
Band defines a technology for interconnecting proces-
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sor nodes (hosts) and I/O devices to form a system area
network [7]. In a first stage, instead of directly replac-
ing the PCI bus with a switch-based interconnection
to access I/O devices, these devices are attached to
a Host Channel Adapter (HCA), which is connected
to the PCI bus. In this way, the communication is
switched from HCA, affording the desired reliability,
concurrency and security. Moreover, it is foreseen [1]
that the PCI bus could be replaced in a near future
by other advanced technologies like PCI Express Ad-
vanced Switching [2].

InfiniBand has been developed to provide present
and future server systems with a cost-effective, high-
performance solution with reliability, availability, and
serviceability support. InfiniBand implements mecha-
nisms to provide each kind of application with the re-
quired QoS. In previous works, [3] and [6], we have de-
veloped a methodology to configure such mechanisms.
The proposed methodology successfully provides appli-
cations with both bandwidth and latency guarantees.
In this paper, we study the influence of the packet size
on the QoS guaranteed to the applications.

The structure of the paper is as follows: Section 2
presents a summary of the most important mechanisms
included in IBA to support QoS; in Section 3, we re-
view our proposal to give QoS guarantees; Section 4
presents the evaluation methodology used to study the
influence of the packet size on the QoS guaranteed to
the applications, as well as the obtained results; finally,
some conclusions are given in Section 5.

2. InfiniBand

InfiniBand hardware provides highly reliable, fault-
tolerant communication, improving the bandwidth, la-
tency, and reliability of the system. The InfiniBand



architecture simplifies and speeds server-to-server con-
nections and links to other server-related systems, such
as remote storage and networking devices, through a
message-based fabric network.

Specifically, IBA has three main mechanisms to sup-
port QoS: Service levels (SLs), virtual lanes (VLs), and
a virtual lane arbitration for transmission over links.
IBA defines a maximum of 16 SLs, although it does
not specify which characteristics the traffic of each ser-
vice level should have. Therefore, the distribution of
the different existing traffic types among the SLs may
be stated by the manufacturer or the network adminis-
trator. By allowing the traffic to be segregated by cat-
egories, we will be able to distinguish between packets
from different SLs and to give them a different treat-
ment according to their needs.

IBA ports support VLs as a mechanism for creat-
ing multiple virtual links within a single physical link.
Each VL must be an independent resource for flow con-
trol purposes. A VL represents a set of transmission
and reception buffers in a port. IBA ports can support
a minimum of two and a maximum of 16 VLs. Since
systems can be constructed with switches supporting a
different number of VLs, the number of VLs used by a
port is configured by the subnet manager. Moreover,
packets are marked with a SL, and a relation between
SL and VL is established at the input of each link by
means of the table SLto VLMappingTable.
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Figure 1. Operation of virtual lanes in a phys-
ical link.

When more than two VLs are implemented, the pri-
orities of the data lanes are defined by the VLArbitra-
tionTable. This arbitration affects only data VLs, be-
cause control traffic uses its own VL, which has greater
priority than any other VL. The VLArbitrationTable
consists of two tables, one for scheduling packets from
high-priority VLs and another for low-priority VLs.
However, IBA does not specify what is high and low-

priority. The arbitration tables implement weighted
round-robin arbitration within each priority level. Up
to 64 table entries are cycled through, each one specify-
ing a VL and a weight, which is the number of units of
64 bytes to be transmitted from that VL. This weight
must be in the range from 0 to 255, and is always
rounded up as a whole packet.
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Figure 2. Structure of the VLArbitrationTable.

Moreover, a LimitO f HighPriority value specifies
the maximum number of high-priority packets that
can be sent before a low-priority packet is transmit-
ted. Specifically, the VLs of the high-priority table
can send LimitO fHighPriority x 4096 bytes before
a packet from the low-priority table can be transmit-
ted. If at a given time, no high-priority packets are
ready for transmission, low-priority packets can also
be transmitted.

3. Our proposal to give QoS guarantees

In previous works [3, 5] we have proposed a sim-
ple strategy to treat the requests of latency guaran-
tee. Specifically, when an application requests latency
guarantee, the maximum distance allowed between two
consecutive entries in the high-priority table must be
computed in order to allocate entries on that table to
the application in question. Moreover, the application
could also request a mean bandwidth that would result
in a weight to be put in the entries of the arbitration
table. Therefore, for a certain connection that requests
a maximum delay that results in a distance d, and a
mean bandwidth that results in a weight w, the number
of entries needed is mam{%‘l, 565 J-

Obviously, the maximum distance between two con-
secutive entries in the high-priority table requested by
a connection ranges from 1 to 64. However, in order to
optimize the filling up of the table, we only consider the
following distances: 2, 4, 8, 16, 32, and 64 [4]. There-



fore, the applications’ requests of a maximum distance
between two consecutive entries in the high-priority ta-
ble are turned into the closest lower power of 2 [6].

Traffic is grouped in SLs according to its maximum
latency. Specifically, all connections using the same SL
need the same maximum distance between two con-
secutive entries in the high-priority table, regardless
of their mean bandwidth. For the most requested dis-
tances, we could distinguish between two or four differ-
ent SLs considering the mean bandwidth. In this way,
if we have enough available VLs, each kind of traffic
could use a different VL.

Moreover, in [6] and [4] we proposed an algorithm
to select a free sequence of entries in the high-priority
table to meet a new application’s request. This algo-
rithm successfully allocates a new sequence in the table
if there are enough available entries. This is achieved
because the available entries are always in the best sit-
uation to treat the most restrictive request. For a con-
nection requesting % entries with a maximum distance
d between them, the algorithm looks for a previously
established sequence for the corresponding VL, with
enough available weight. If there is no available se-
quence, a new free sequence with the desired charac-
teristics is looked for.

In a more formal way, in a table T, let the se-
quence tg,t1,..., L2, te3 represents the entries of the
table. Each t; has an associated weight w; whose value
can vary between 0 and 255. Thus, we say an entry
t; is free if and only if w; = 0. For a table T and a
request of distance d = 2, we define the sets E; ; with
1=logyd and 0 < j < d, as
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Each E; ; contains the entries of the table 1" spaced by
an equal distance d which are able to meet a request
of distance d = 2% starting with the entry t;. We say a
set F; j is free if Vi € E; ;, ty is free. Other properties
derived from this definition are available in [4].

In [6] we also presented a simple algorithm to max-
imize the number of requests allocated in the arbitra-
tion table. For a new request of distance d = 2, the
algorithm studies all possible sets E; ; for this kind of
request, in a certain order, and selects the first set that
is free (so, all its entries are free). The order the sets
are inspected in is based on the application of the bit-
reversal permutation to the distance values in the in-
terval [0,d — 1]. Specifically, for a new request of maxi-
mum distance d = 2¢, the algorithm selects the first free
E; ; in the sequence F; gy, Ei R, -, iR, , Where
iR; is the bit-reversal function applied to j codified
with ¢ bits. Note that this algorithm is only applied if

Ei)j = {tj+n><2i ;o o n= 07 ..

there is no previously allocated sequence for the same
requested distance with available room in its entries.

For example, the order the sets are inspected for a
request of distance d = 23 is Eg,(), E3,4, Eg,g, Eg’g, Eg’l,
Es 5, E3 3, and E3 7. Note that this algorithm first fills
in the even entries, and later the odd entries. In this
way, if we have available entries, we can always meet a
request of distance 2, which is the most restrictive. The
same consideration can be made for longer distances.

In [4], we have also proved several theorems showing
that the algorithm can always allocate a new request
if there are enough available entries. This is achieved
because the algorithm always selects the sequences in
the optimal way for satisfying later the most restrictive
possible request.

When a connection finishes, its bandwidth is de-
ducted from the accumulated bandwidth in the entries
it was occupying. When this accumulated bandwidth is
zero those entries must be released. When some entries
are released, a disfragmentation algorithm must be ap-
plied to leave the table in a correct state, such that
the proposed filling in algorithm can be used. This
disfragmentation algorithm and its properties are also
described in [4]. Basically, it puts together small free
sets to form a larger free set, moving the content of
some entries.

Both algorithms together permit the allocation and
release of sequences of entries in the arbitration table
in a optimal and dynamical way [4]. This allows us to
provide applications with QoS using the IBA mecha-
nisms in an optimal way.

4. Performance evaluation

In [3] and [6] we have evaluated the behavior of our
proposals using a fixed packet size. We have shown that
our proposals are able to provide applications with QoS
guarantee. In this section, we are going to determine
if the packet size has influence on the QoS guaranteed
to the applications. In the following points, we explain
the network and the traffic models we have used.

4.1. Network model

We have used irregular networks randomly gener-
ated. All switches have 8 ports, 4 of them having a
host attached, the other 4 being used for interconnec-
tion between switches. We have evaluated networks
with sizes ranging from 8 to 64 switches (thus, with 32
to 256 hosts, respectively). We have also tested several
packet sizes ranging from 256 to 4096 bytes, and the
three link rates specified in IBA. Taking into account



the space limitation and the fact that all these vari-
ations present similar results, we have only included
here results for the 16 switches-network and a link rate
of 2.5 Gbps.

In the switches both at input and output ports, there
are 16 VLs so that a different VL may be assigned to
each SL. Each switch has a multiplexed crossbar. As
IBA uses virtual cut-through we have only considered
buffer sizes that allow to store completely whole pack-
ets. Specifically, we have considered buffer sizes of 4
whole packets of capacity, which is a usual value for
this parameter in this type of study.

InfiniBand specifies that the packet size must be be-
tween 256 bytes and 4096 bytes. Therefore, we have
tested several packet sizes in this range. Specifically, we
have considered packets of size 256 bytes, 1024 bytes,
2048 bytes, and 4096 bytes.

4.2. Traffic model

We have used 10 SLs for traffic needing QoS. Each
SL presents a different maximum distance and band-
width requirements. We have used CBR traffic, ran-
domly generated among the bandwidth range of each
SL. For the most requested distances several SLs have
been considered using the mean bandwidth of the con-
nections. Specifically, the SLs used and their features
are shown in Table 1.

Table 1. Features of the SLs used.
| SL | Maximum Distance | Bandwidth Range (Mbps) |

0 2 0.064 - 1.55
1 4 0.064 - 1.55
2 8 0.064 - 1.55
3 16 0.064 - 1.55
4 0.064 - 1.55
5 32 1.55 - 64

6 0.008 - 0.064
7 0.064 - 1.55
8 64 1.55 - 64

9 64 - 255

The connections of each SL request a maximum
distance between two consecutive entries in the high-
priority table and a mean bandwidth in the range
shown in Table 1. Note that this is similar to request-
ing a maximum deadline and computing the maximum
distance between two consecutive entries in the virtual
lane arbitration tables.

Each request is considered by each node along its
path and is accepted only if there are available re-
sources. Connections of the same SL are grouped into
the same sequence of entries in the arbitration table.

The total weight of the sequence is computed according
to the accumulated bandwidth of the connections shar-
ing that sequence. When the connection cannot be set-
tled in a previously established sequence (or there is no
previous one), our algorithm looks in the high-priority
arbitration table for a new free sequence of entries with
the correct distance between its entries.

When no more connections can be established, we
start a transient period in order for the network to
reach a stationary state. Once the transient period fin-
ishes, the steady state period begins, where we gather
results to be shown. The steady state period continues
until the connection with a smaller mean bandwidth
has received 100 packets.

Although the results for best-effort traffic are not
the main focus of this paper, we have reserved 20%
of available bandwidth for this type of traffic, which
would be served by the low-priority table. So, connec-
tions would only be established in up to 80% of the
available bandwidth.

4.3. Simulation results

We can see in Table 2 several metrics measured for
the different packet sizes considered. Specifically, we
have computed the injected and delivered traffic (in
bytes/cycle/node), the average utilization (in %), the
average bandwidth reserved (in Mbps) in host inter-
faces and switch ports, and the number of established
connections. Note that the maximum utilization reach-
able is 80%, because the other 20% is reserved for BE
and CH traffic. We are therefore close to the maximum
utilization achievable. Obviously, we could achieve a
higher utilization establishing more connections, but
we have already made many attempts for each SL. We
could establish other connections, but these connec-
tions would be of SLs with a small mean bandwidth on
account of the heavy network load, and it is unlikely
that these new connections would provide us with more
information. So, it seems reasonable to assume that
with this load we can study the network behavior in a
quasi-fully loaded scenario.

Note that achieved utilization grows for larger
packet size. This is because with a larger packet size
more connections are established. When the packet
size increases then the overhead that the packet header
means decreases. For small packet size this overhead
is more important than for larger packet sizes. There-
fore, for larger packet sizes more connections can be
established, and so the network achieves a little higher
utilization and load. The same happens for the other
evaluated indexes. Note also that in all cases the net-
work transmits all the packets it receives, and therefore



Table 2. Traffic and utilization for different packet sizes.

Packet size (in bytes)

256 | 1024 | 2048 [ 4096
Injected traffic (Bytes/Cycle/Node) 0,7258 | 0,7432 | 0,7507 | 0,7607
Delivered traffic (Bytes/Cycle/Node) 0,7258 | 0,7432 | 0,7507 | 0,7607
Av. utilization for host interfaces (%) 72,58 74,32 75,07 76,07
Av. utilization for switch ports (%) 73,48 75,50 75,04 75,13
Av. reservation for host interfaces (Mbps) | 1848,67 | 1867,80 | 1882,44 | 1905,32
Av. reservation for switch ports (Mbps) 1871,75 | 1897,58 | 1881,69 | 1881,63
Established connections 111813 | 113233 | 115779 | 118938

delivered traffic is equal to injected traffic.

We have also computed the percentages of packets
that meet a certain deadline threshold. These thresh-
olds are different for each connection and are related
to their requested maximum deadline. This maximum
deadline is the maximum delay that has been guaran-
teed to each connection. In the figures, this deadline is
referred to as D. The results for each SL are presented
in Figure 3 for the considered packet sizes. In these
figures, we can see that all packets of all SLs arrive at
their destinations before their deadlines. However, for
larger packet size, the packets take more time to arrive

Packets received before thresholds(%)
Packets received before thresholds(%)

5]
3

Packets received before thresholds(%)
Packets received before thresholds(%)

Figure 3. Packet delay for packet sizes of (a)
256 bytes, (b) 1024 bytes, (c) 2048 bytes, and
(d) 4096 bytes.

at their targets. This is because the network is more
loaded, as previously stated. There is more traffic in
the network and so there is somewhat more contention.
However, in all the cases, all packets of all SLs arrive
at their destinations before their deadlines expire.

Moreover, as the thresholds are different for each
connection (they are related to their maximum dead-
line), they are also different for each service level.
Therefore, the packets belonging to stricter service lev-
els arrive at their targets closer to their deadline expiry,
as this is far smaller than for other service levels.

We have also measured the average packet jitter.
We have computed the percentage of packets received
in several intervals related to their inter-arrival time
(IAT). Obviously, these intervals are different for each
connection. The results for each SL are shown in Figure
4, for the considered packet sizes. We can see that for
the strictest SLs (SLs 0, 1, 2, 3, and 4) all packets
arrive at their targets in the central interval, except
for packet size of 4096 bytes (Figure 4(g)). In this case
we can observe that some packets have arrived at their
targets in other intervals. As stated, this is because
the network is a more loaded in this case and so some
contention appears.

For the other SLs with bigger mean bandwidth (SLs
5, 6, 7, 8, and 9) the jitter has a Gaussian distribu-
tion. In these cases, the majority of the packets arrive
at their targets in the central intervals, the number de-
creasing as we move from the central interval. This is
because these SLs are lower priority, and also because
some of them have larger bandwidth ranges, and so
their IAT and intervals are smaller. For example, the
connections belonging to SL 9 have bandwidth ranging
from 64 Mbps and 255 Mbps, and so their IAT is far
smaller than for other SLs with bandwidth around 1
Mbps.

Moreover, it should be noted that there are no ap-
preciable differences in the behavior of the jitter for the
different packet sizes considered. According to the ob-
tained results there are other parameters (bandwidth,
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Figure 4. Packet jitter for packet sizes of (a) and (b) 256 bytes, (c) and (d) 1024 bytes, (e) and (f) 2048
bytes, (g) and (h) 4096 bytes.

priority of the SL, etc.) that have influence in the jit- jitter results.
ter, but all the packet sizes considered obtain similar Finally, for a given deadline threshold, we have se-



lected the connections that deliver the lowest and the
highest percentage of packets before this threshold. In
the figures, these connections will be referred to as the
worst and the best connections, respectively. We have
selected a very tight threshold so that the percentage
of packets meeting the deadline was lower than 100%
in Figure 3. In particular, we have selected the thresh-
old equal to %. Note again that this threshold
is different for each connection and depends on its own
maximum deadline. Figure 5 shows the results for the
considered packet sizes and for the SLs 0, 1, 2, and 3,
which are the SLs with the highest deadline require-
ments. The results for other SLs are even better than
these shown in the figures. It is noteworthy that, in all
cases, even the packets of the worst connection arrive
at their destination before their deadline.

In the same sense as for the average latency, when
the packet size increases the considered best and worst
connections deliver the majority of their packets later.
However, in all cases, even the packets of the worst con-
nection arrive at their destination before their deadline
expires.

Note also that the difference between the connec-
tion considered the best and that considered the worst
is very similar. In this sense, there is no important
difference. This is very important since it means that
the arbitration performed treats all the connections be-
longing to the same SL in a similar way.

5. Conclusions

In [3] and [6] we proposed a new methodology to
provide each kind of application with the previously
required QoS level. We also proposed an algorithm
to select a free sequence of entries in the arbitration
table. This algorithm successfully allocates a request
in the arbitration table if there are enough available
entries. It manages the requests in an optimal way,
being able later to satisfy the most restrictive possible
request. Some formal properties and theorems derived
from this algorithm are shown in [4].

In this paper, we have studied the influence of the
packet size on the QoS guaranteed to the applications.
We have tested several packet sizes ranging from 256
bytes to 4096 bytes, which is the maximum packet size
allowed in InfiniBand. The most important result may
well be that for all packet sizes our proposals meet the
QoS requirements.

According to the obtained results, packet size has a
collateral influence in the QoS provided to the appli-
cations. The proposed methodology manages to pro-
vide applications with QoS guarantee according to the
previously demanded requirements, regardless of the

packet size considered. However, for large packet sizes,
where the packet header means a lower overload for the
network, more connections can be established. This
fact is very important for the obtained results because
as we can establish more connections, a correspond-
ingly higher utilization is achieved in the network, with
the result that there is somewhat more contention.
This affects the average latency that the applications
present, which grows slightly when the packet size in-
creases.

However, we can conclude that the packet size has
no direct influence on the proposed methodology, be-
cause in all the cases the requirements demanded by
the applications are achieved. Therefore, the resources
are measured and scheduled in a correct way, and the
performed arbitration is also correct.
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Figure 5. The best and the worst connection for SLs with the strictest delay requirements, for packet
sizes of (a), (b), (c) and (d) 256 bytes, (e), (f), (g) and (h) 1024 bytes, (i), (j), (k) and (I) 2048 bytes, and
(m), (n), (o) and (p) 4096 bytes.



