
adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

A Model-Based Approach for Supporting Offline 

Interaction with Web Sites Resilient to Interruptions 

Félix Albertos Marco
1
, José Gallud

1
, Victor Penichet

1
 and Marco Winckler

2
   

1 Escuela Superior de Ingeniería Informática de Albacete 

Campus Universitario, 02071 Albacete, Spain 
{felix.albertos, jose.gallud, victor.penichet}@uclm.es 

2 Université Paul Sabatier, ICS-IRIT team 

118 route de Narbonne, 31062 Toulouse CEDEX, France 
winckler@irit.fr 

Abstract. Despite the wide availability of Internet connections, situations of in-

terrupted work caused by accidental loss of connectivity or by intentional of-

fline work are very frequent. Concerned by the negative effects of interruptions 

in users’ activities, this work investigates a new approach for the design and 

development of Web applications resilient to interruptions. In order to help us-

ers to recover from interruptions whilst navigating Web sites, this paper pro-

poses a model-based approach that combines explicit representation of end-user 

navigation, local information storage (i.e. Web browser caching mechanism) 

and polices for client-side adaptation of Web sites. With this model, we are able 

to provide users with information about which Web site’s contents are available 

in an offline mode and how they can get easy access to local cache content. 

Moreover, the model can be also be used to set proactive mechanism such as 

pre-caching Web pages that are likely to be seen by users.  Mechanisms for 

synchronizing Web contents when the interruption is resumed are also dis-

cussed. Such model-based approach is aimed to be used to build new Web sites 

from scratch but it can also be used as a mapping support to describe offline 

navigation of existing Web site. This paper presents the conceptual model, a 

modeling case study and a tool support that illustrates the feasibility of the ap-

proach.   

 

Keywords: work interruption, caching modeling, model-based approach.   

1 Introduction 

Despite the wide availability of Internet connections, situations of interrupted work 

caused by accidental loss of connectivity or by intentional offline work are very fre-

quent. Several studies have demonstrated negative effects of interruptions in users 

activity: resuming to task after interruptions is difficult and can take a long time [21], 

interrupted tasks are perceived as harder than uninterrupted ones [1, 11], interruptions 

cause more cognitive workload and they are quite often annoying and frustrating be-

mailto:victor.penichet%7d@uclm.es


2 

 

cause they disrupt people from completing their work [10, 11]. Interruptions can be 

particularly dreadful when navigating the Web because they often cause users to be 

disconnected from the applications, so that users should restart tasks from the begin-

ning rather than simply resuming them. Interruptions can also be very annoying when 

navigating Web sites that do not even require a connection because most Web brows-

ers do not allow a natural navigation through content already stored in the local cache. 

The study of interruptions is relatively new and there is very little information 

about how interruptions affect users’ activity on the Web. However, some studies in 

the field of Human-Computer Interaction can provide some clues about how to tackle 

this kind of problem. Formally speaking an interruption can be defined as a (inten-

tional or unexpected) switch between two tasks; when an interruption occurs, users 

are forced to do something else (the secondary task) until the primary task could be 

resumed [20]. It has also been shown that interruptions will ultimately affect users’ 

ability to complete tasks but the disruptive effect varies according to the type of inter-

ruption (e.g. system alarms and notification, deny of service, loss of connectivity…) 

[14]. Thus, there is no universal solution for dealing with interruptions. Nonetheless, 

an interruption is not a fate. Indeed, previous work [6,14,19] have shown that is pos-

sible to design interactive applications to be resilient to interruptions. The term resili-

ent is often used to address systems that are able to recover from failures, but in the 

present context it is used to qualify applications that can prevent from the occurrence 

of interruptions, help users to resume from interrupted tasks, and/or ensure a mini-

mum level of service for performing a task despite of the interruption [14].  

This work investigates a new approach for the design and development of Web ap-

plications resilient to interruptions. We specifically address interruptions caused by 

the loss of connectivity. Our goal is to ensure, as much as possible, a continuity of 

services to users that (chose or are forced to) work offline until their connection could 

be restored. For that, we propose a model-based approach that combines explicit rep-

resentation of end-user navigation, local information storage (i.e. Web browser cach-

ing mechanism) and policies for supporting client-side adaptation of the Web site. 

With this model, we are able to provide users with information about which Web 

site’s contents are available in an offline mode and how they can get easy access to 

local cache content. The approach encompasses mechanisms for pre-caching Web 

pages that are likely to be seen by users. It is fully supported by a set of tools that 

have been specially designed to illustrate its feasibility. These tools explore the full 

potential for local storage management provided by HTML5; they include an editor 

for modeling the Web site navigation and a player for managing the navigation in 

offline mode. The approach and the tools can also be used with existing Web site. The 

rest of the paper is organized as follows: section 2 provides an overview of the litera-

ture on interruptions, Web technologies, solutions for local storage (i.e. cache) and 

Web navigation models; this section is aimed to provide the necessary technical 

background for understanding our approach that is presented at the section 3; the fol-

lowing section 4 presents a case study and a set of tools that have been specifically 

conceived to illustrate our approach; then at section 5 we present our conclusions and 

we discuss the perspective for such as an approach.  

 



3 

 

2 Review of the literature 

2.1 Interruptions in interactive applications 

The research on interruptions is still relatively new, and much work still needs to be 

done at both theoretical and applied levels [10,11]. The study of interruptions raises 

questions of non-exclusive practical and theoretical significance [13]. Most of the 

current research has been done by conducting empirical studies with users either on 

controlled conditions (i.e. usability labs) or on working environment (e.g. ethnograph-

ical studies) [1]. Nonetheless, as discussed in [20] there are some evidences on how to 

reduce the disruptive effects on user tasks: i) human training: it has been shown that 

trained users can rehearse or use environmental clues to mitigate the disruptive effects 

of interruptions; ii) design guidelines provide recommendations to reduce the effects 

of interruptions; for example, adding a clue over the use interface on the area where 

the task has been interrupted can improve user performance upon resumption of the 

task. McFarlane [10] suggests that user control of interruptions is beneficial because it 

allows the person to have control over the encoding time; and iii) specialized tool 

support, such as GroupBar [6] can help people to save and retrieve applications and 

window management setups, which can be extremely useful when switching tasks.  

2.2 Caching models for Web application 

Cache management is one of the most important mechanisms to improve the perfor-

mance of Web services [5]. By caching Web pages at proxy servers or servers close to 

end users, requests can be fulfilled by fetching the requested document from a nearby 

web cache, instead of the original server, reducing the request response time, network 

bandwidth consumption, as well as server load. A side-border effect of cache is that 

the information stored locally is available even in case of loss of connectivity.   

Chang et al. [4] argue that disconnection is common in the mobile environment. 

For that they [4] propose a standard browsing model called ARTour Web Express that 

is aimed at supporting user work in disconnected mode by making the cache model 

transparent to both Web browsers and Web (proxy) servers. That tool contains a list 

of all HTML entries in the cache. Each entry is a hyperlink to the corresponding 

cache entry, so it may be used for browsing local pages when disconnected. Other 

examples of similar tools supporting cache management are Web-Based Temwork 

[22], Taba Workstation [7] and BITSY [12]. However, these tools don’t allow tuning 

the Web application for working in offline mode. 

Most browsers do not have the necessary mechanisms to manage Web sites in of-

fline mode. Recently, the plugin Google Gears provided browsers with the ability to 

persist data for offline use. However, until now it’s been difficult to manage persisting 

data both locally mainly due to: synchronization requirements, managing throughput, 

latency, and use of non-standards compliant web browser. Cannon and Wohlstadter 

[3] propose a framework for offline storage that introduces automated persistence of 

data objects for JavaScript. Such framework supports the communication between a 

browser and a server where the browser initiates the connection.  

The development of Web applications supporting offline work requires a complex 

architecture [8]. Existing applications are harder to adapt with offline support, usually 

implying writing alternate versions of its code [9]. Tatsubori and Suzumura [15] pro-



4 

 

pose a development method that speeds up the implementation of offline work in a 

Web application by deploying server functionalities on the local machine. However, 

replicating all data to the local server isn’t practical for all applications. They over-

come this by enhancing the local server with an adaptive pre-fetcher mechanism that 

keeps fetching useful data from the remote server. Benson et al. [2] propose the syn-

chronization of relational database between the browser and the web server and a 

client-side template library. Whilst that work [2] can reduce the transfer between the 

client and the server it does not necessarily improve the navigation into local storage.   

2.3 Client-side technologies for supporting local cache management 

Most of the approach for cache management relies on server-side technologies (e.g. 

proxy and server-side templates). However, more technologies such as Gears-monkey 

[9], HTML5 [23] and Web storage [24] allows to envisage new strategies for store 

locally information from Web applications. Gears-monkey [9] allows the injection of 

code into third-party Web sites that are visualized in browsers. Client-side scripts 

developed by users can thus be injected to support offline information management. 

Nonetheless, this solution is limited to a few platforms and cannot be executed. 

Moreover, it requires experience users to write the required scripts.  

Webstorage [24] introduces two related mechanisms, similar to HTTP session 

cookies for storing name-value pairs on the client side. The first is designed for sce-

narios where the user is carrying out a single transaction, but could be carrying out 

multiple transactions in different windows at the same time. The second storage 

mechanism is designed for storage that spans multiple windows. Webstorage is useful 

for storing pairs of keys and values. However, it does not provide in-order retrieval of 

keys, efficient searching over values, or storage of duplicate values for a key.  

World Wide Web Consortium (W3C) has recently proposed to integrate local stor-

age management into their recommendations [23]. Indeed, the candidate recommen-

dation of HTML5 fully integrates functions for local cache management and offline 

work, which was completely neglected in previous versions. Using HTML5’s applica-

tion Cache technology allows us to address the requirement of be always connected to 

use the web. However, one of the main issues about the Application Cache proposed 

in HTML5 is that there isn’t an underlying model.  

2.4 Model-based approach for dealing with interruptions 

There are several attempts to formalize cognitive models describing the impact of 

interruptions in the human behavior [17, 21]. The unpredictability of interruptions 

would favor the use of declarative models to describe what should be accomplished 

by the user system (whatever it happens) rather than describe the steps required (i.e. 

control flow) to accomplish it [15]. Notwithstanding, there are some situations where 

the interruption of actual task can be predicted (in particular when users decided to 

get interrupted), so that the systems should provide an alternative representation of the 

interrupted tasks. Only a few works in the literature have addressed the description of 

interruptions in system specifications [14]. It is interesting to notice that despite the 

fact that model-based approaches [16] are prominent in the field of Web engineering, 

as far we could investigate there is no clear proposal for using MDA for building Web 

sites resilient to interruptions.  



5 

 

3 A Model-Based Approach for Supporting Off-Line   

3.1 The approach in a nutshell 

The underlying premise of our approach is to combine explicit representation of end-

user navigation and local information storage. In general, navigation models are used 

to describe the relationship between the pages of a Web site. We define navigation 

models that are able to cope with two basic requirements: i) to determine a set of in-

formation resources available in every state during the user navigation over a Web 

site; and ii) be able to describe the transitions linking the states. Thus the focus of the 

model relies on the hypertext level of Web applications as illustrated by Fig. 1. States 

in the navigation models correspond to a container (typically a Web page) that holds a 

set of information units featuring a Web page. The transitions correspond to the links 

that allows users to navigate from a page to another. Transitions might contain condi-

tions that can be used the activation (or not) of links, thus providing the means to 

control the navigation between Web pages.  Mappings are thus established between 

state and the underlying information available in a given Web page. Similarly, map-

pings can be established between transitions and links embedded into the Web page. 

 
Fig. 1. Modelling levels of Web applications. 

One of the premises of this work is that navigation models can be used for control-

ling the access to contents delivered by Web sites. We assume that a Web site might 

contain a navigation model that describes the navigation online and an offline naviga-

tion model that represents a possible navigation for the Web site when user is discon-

nected. Despite the fact these two navigation models refer to the same Web site, they 

will run independently accordingly to the status of the connection. The offline model 

described hereafter is only activated when the user is offline. States in the offline 

model should represent contents and resources that are stored in the local cache and 

transitions contains path to access the local cache storage instead of URLs. Fig. 2 

provides a view at glance on how the key component of our approach, i.e. resources, 

offlinemode, local storage and cache, are distributed between the client and the serv-

er. As we shall see in Fig. 2, resources (i.e. actual Web site content) are delivered to 

the client in conjunction with an offline model. Our approach relies on a local storage 

component to establish mappings policies for accessing information stored in the local 

cache.  



6 

 

 
Fig. 2. Overview of the architecture of our approach describing local cache storage places.  

The approach provides users with information about which Web site’s contents are 

available when they are interrupted and how they can get easy access to local cache 

content. The proposed model represents the static properties of a web site, as well as it 

behavior. The static properties define the structure of the web site. The behavior de-

fines how the system will react to the events and how it will change over the time. 

Hereafter we describe the basic concepts used for building offline models. 

3.2 Basic concepts of the offline model 

The basic concepts of the offline model are heavily inspired from SWC notation [25] 

dedicated to modeling of Web sites navigation. It is represented as a graph (called 

project) that contains nodes and connections defined by the following attributes:  

node: id, name, url, state 

where: id is the node identification; 

name is a label for the node; 

url is the original URL address of the Web page on the server; 

state is a property that describe possible states for a node, including:  

[normal, precacheable, nocacheable, initial, external], [novisited, visited],  

[nocached, cached]].  

connection: id, src, tgt, type 

where: id is the id of the connection; 

src is the id of the source node 

tgt is the id of the connecting node 

type is a property that describes the visibility of connection, including:  

[normal, online, offline, alternative]. 

The overall offline model is thus composed of the following elements: 

 Project: it corresponds to a set of contents, nodes and connections that are in the 

perimeter of the Web site concerned by the navigation model; The information 

needed to define a project includes the identification of the Web site, the location 

of the Web site and the status (online/offline) that is used to check the URL base 

for determining if the offline model must be activated or not.  

 Content:  refers to the many kinds of elements, such as textual, visual and audio 

information etc., that are available in a Web site. Contents are usually organized 

by information units as often delivered by Web pages. However, some contents 

are embedded into the HTML code while others are encoded into external files 

(e.g. CSS, images, videos, etc.) or only accessible after connecting to a database. 



7 

 

We assume that Web pages can be static with fixed content; for dynamic when 

generated on the fly.  

 Nodes: this is the basic elements in the model; a node usually refers to a Web 

page. Nodes correspond to states that constitute the graph representing the navi-

gation in the Web site. Each node is associated to a list of contents that are avail-

able when the users access a particular Web page. When dealing with dynamic 

pages, nodes in the offline model correspond to a snapshot of the content deliv-

ered by the site in a given moment of time and, as long as the user is disconnect-

ed that node is treated as a static Web page. It is noteworthy that, within a web 

project, navigation may go beyond the boundaries of the site. In such cases, 

nodes are used to represent external states that appear in the navigation model; 

however such nodes have no content associated to them.  

 Mapping between nodes and contents: nodes should be considered containers 

of a set of contents, either static or dynamic. A mapping function describes what 

is the exactly content that a state must contain. The mapping between contents 

and nodes in the offline model is illustrated by Fig. 3. 

 
Fig. 3. Mapping between contents and web pages. 

 States: this element is used to describe three different properties (static, naviga-

tional and data ) that characterize the state of a node:  

o Static: it describes how the node is defined in the model. Possible values are: 

internal, external, initial, precacheable, nocacheable and normal; internal 

means the node represents an element of the web site, whilst external repre-

sent an node for a connecting third part web site, the case normal refers of a 

node that is part of the navigation model. An initial node indicates the state 

for starting the navigation; only one initial state is allowed in offline mode. 

Nodes marked as Precacheable are always cached when the web site is visit-

ed. Conversely, nocacheable will never be stored;  

o The property navigational state is used to set the actual dynamics of Web 

site navigation; so they will change accordingly to the user navigation. Pos-

sible values for nodes are: nonvisited and visited.  

o The property data state defines what the cache was able to store in respect to 

the user navigation and the expected behavior set for the model. As a result, a 

node can be cached or no cached. When a node is cached, it will be available 

when the site is interrupted. When a node is nocached, it wouldn’t be availa-

ble when the site is interrupted. 



8 

 

 Connections: this refers to the links that allows the navigation between nodes. 

Connections are set by identifying a source and a target node. Moreover, the nav-

igation between nodes is defined by the attribute type that might contain one of 

the following values: normal (is a usual link), online (is an external url), offline 

(is a modified link that points to the content that is available on the local cache, 

this is used to avoid dangling links in the offline mode), alternative (is a link cre-

ated to provide alternative content that does not refer to the original Web site). 

 Storage places: it refers to possible locations for the contents (e.g. web, proxy, 

local cache). The approach can combine access to distant resources only availa-

ble on the Web server and contents available on local or distant caches. The stor-

age contains: web pages, with all the associated resources, and the offline model 

that recreate the navigation through content for offline operations. Within this lo-

cal cache, two techniques are used: application cache and local storage as illus-

trated by Fig. 2. Application cache is used to store locally elements of the offline 

model and Web contents. The local storage stores annotated web pages and in-

formation about the offline model, such us visited nodes and related properties. 

3.3 Runtime concepts of the model.  

If an interruption occurs, the offline model is supposed to intervene. An adaptation of 

the Web site at the client-side is then required to support offline navigation. When the 

connection is restored, users should be able to resume the navigation online and even-

tually synchronize the actions performed offline with the Web server. Thus, users 

should be constantly informed about the status of the connection and what is actually 

available on the local cache and how such contents can be navigated.  

Mechanisms for client-side adaptation of Web pages.  

The local cache is dynamic and the contents stored locally might evolve overtime. 

Certain nodes might lack of the necessary information to be shown during offline 

navigation. In order to cope with such dynamic aspects, we propose small modifica-

tions in the DOM structure of locally stored Web page. The policies for modifying the 

DOM are derived from the information provided by the offline model. Such transfor-

mation should include: i) replacing link’s labels to indicate if the target resource is 

local or external; ii) removing links and resources that are not available in offline 

mode; iii) providing alternative contents to links; iv) add a navigation map to inform 

users what resources are available whilst offline. 

 
Fig. 4. Example of link transformation and content replacement to cope with offline navigation.  

b) Target page showing online link to stream video 

 

 

 

 c) Target page showing an image replacing online resource 
a) Source page when the link 

is modified 
 



9 

 

Fig. 4 and Fig. 5 illustrate some of these DOM modifications on Web pages to 

cope with offline navigation. Fig. 4 illustrates how links have been replaced in the 

source page (Fig. 4.a) to prevent users from navigating to a page that contains a video 

streaming only available online (Fig. 4.b). Instead of the video, users working offline 

will see a static picture but the rest of the text content of that page remains intact (see 

Fig. 4.c). Fig. 5 shows another example of adaptation where DOM elements have 

been disabled to prevent users to try to access external resources such as database or 

interactive maps (Fig. 5.a). Removing DOM elements is a possible, yet a drastic, 

solution that could be alleviated by adding alternative content; for example, when 

offline users cannot search products in a database they could be diverted to a simple 

page featuring a PDF catalogue. Using similar client-side adaptation techniques, 

DOM elements can be inserted in Web pages to users informed about the nodes and 

resources available in offline mode.  Fig. 5.b shows a new element depicting the graph 

of the corresponding offline model for navigation the Web site.  

    

Fig. 5. Example of DOM modifications to cope with offline navigation. 

Client-side adaptations and user interactions in offline mode.  

All the client-side adaptations proposed in our approach are supported by the infor-

mation available in the offline model. Fig. 6 provides an excerpt of the algorithm that 

performs the adaptations by removing contents and changing link destination accord-

ing the underlying offline model. In the example below, all elements in the current 

Web page are parsed and if the data-offlineStatus attribute is set to “disabled” in the 

offline model, then that element is removed from the web page. If the element is hy-

perlink, the data-offlineURL value is checked to determine if the destination should be 

replace; which is done by changing the href attribute on the source page. 

for (every Element in WebPage) do { 

// Content removal 

if (Element.attributes.data-offlineStatus==”disabled”){ 

     Element.remove(); 

} else { 

     // Change Link Destination 

        if ((Element.represents(hyperlink)) && (Element.attributes.data-

offlineURL.hasValue())){ 

        Element.attributes.href = Element.attributes.data-offlineURL.getValue(); 

     } 

} 

… 

} 

Fig. 6. Excerpt of the algorithm for adapting Web pages to cope with offline navigation. 

 

 

Legend:                New elements                               Removed elements 

 a) before                                                                                                   b) after  



10 

 

The algorithm for adapting Web pages at the client-side takes into account not only 

the definitions of the offline model but also the user interactions during the navigation. 

Table 1 shows possible values for nodes and the corresponding status; for example, 

normal nodes are those nodes that can be accessed always in online mode, but only in 

offline mode if they are available in the local cache; online and offline nodes are only 

accessible in the eponym modes; finally, alternative nodes are added as a substitution 

for unavailable online content and can only be accessed when the user is offline.  

Table 1. Node availability accordingly to the status of the users connection.  

Mode \ Node type Normal Online Offline Alternative 

Online X X -  

Offline X - X X 

Table 2 shows other properties that determine the accessibility of nodes in the of-

fline model. The access to nodes also depends on the existence of connections be-

tween nodes and the type of the target node. For, the properties cache can be assigned 

to a node that is likely to be visited during a Web site navigation; by setting this prop-

erty in a node it is possible to request the storage (i.e. precache) of the corresponding 

contents in the local cache; the offline connection can reach that node regardless if the 

user has visited the web page or not. Fig. 7.a illustrates the decision process for de-

termine node accessibility; notice that initial states are always accessible. 

Table 2. Node properties determining whether or not the content is accessible when offline.  

Target node properties/ Connections types Normal Online Offline Alternative 

External  Yes No Yes Yes 

Initial Yes Yes Yes Yes 

Cached  Yes No Yes Yes 

No cached  No No No No 

Other properties determining the accessibility of nodes depends whether (or not) 

the user has actually visited the Web page. This aspect is defined by the property data 

associated to each node. The user navigation over the Web site changes dynamically 

the value of the property data of nodes. Table 3 shows the effect on local storage 

accordingly to the type of the node and the user navigation on the Web site.  The de-

cision process for determining if content is accessible (or not) is illustrate by Fig. 7.b. 

Table 3. Effects on local storage of user navigation.  

Node data status/Node type Normal Initial Precacheble Nocacheable 

Novisited Nocached Cached Cached Nocached 

Visited Cached Cached Cached Nocached 

   
           a) accordingly to online/offline scenarios                                          b) accordingly to actual user navigation 

Fig. 7. Decision process for determining node accessibility. 



11 

 

Synchronization mechanisms.  

Our approach also defines mechanisms for synchronizing contents for resuming user 

activity when the connection is back. Synchronization is done in two levels within the 

local cache: the application cache manager and the offline model, as illustrated by 

Fig. 8. We assume that the application cache manager is implemented in HTML5. It 

is in charge of keeping up to date web content associated with the application cache 

storage. The application cache version included in the offline model allows updating 

the content if it is out of date. When an online page is loaded or the site status changes 

to online, the offline model is responsible of checking if all the content associated 

with the offline model is stored locally.  

 
Fig. 8. Synchronization mechanisms. 

4 Tool Support and Case Study 

In this section we present two tools we have developed to demonstrate the feasibility 

of our approach.  

4.1 Tools support 

Fig. 9 provides the overall architecture of the tools.  

 
Fig. 9. Overall architecture of the tools developed to support the approach and the interaction 

with the Client browser and third-party web site.  

The Offline Model Editor is dedicated to designers and it is aimed to support the de-

sign of the model for existing Web sites; this editor runs in a browser using jQuery 



12 

 

1.8 and jQuery UI 1.8. It is divided in two applications. The first application is the 

Site Editor. It is used to design the behavior of the web site, managing web pages 

properties and connections between them. It also allows simulating navigation be-

tween nodes and the interruptions due to lose of connectivity. The second application 

is the Node Editor which is used to annotate individual web pages in order to define 

the rules for content transformation. It allows designers to include the available trans-

formation only by means of making a click over the desired elements. The tool avail-

able for end-users features a parser of the offline model. It appears on the Web client 

as a graphical element (offline site map) that provides users with information about 

the pages available, the corresponding links and the state of the connection.  

4.2 Demonstration of tools by a case study 

Hereafter we present a set of scenarios that illustrate the usage of the tools. We as-

sume two users: a web designer who aims at creating the offline model for a Web site; 

and an end user who uses offline model.  

4.3 Creating the offline model 

Let us assume a very simple Web site. After designing the entire site, as depicted in 

the Fig. 10.a, the designers is asked to create an offline model for allowing users to 

access in disconnected mode. The first restriction is to remove elements that would 

crash if users use in offline mode, such as the map from the “CONTACT” web page 

and the Google’s search bar. The second issue to replace the entire “PROJECT I” web 

page by another one featuring only textual information and an image instead of the 

original video. Finally, the page “NEWS” should not be accessible when offline. In-

stead, the “NEWS” page should refer the page “ABOUT” when offline.  

  
                         a) navigation of the web site               b) offline navigation model  

Fig. 10. Site map and offline model for the case study.  

By using the tool Site Editor, the designer creates a navigation model as illustrated 

by Fig. 10.b by defining nodes and connections. Part of the process of creating such 

as a graph can be automated by parsing the pages of the Web site: connections can be 

created from existing links between web pages; external pages can also be represented 

automatically by inferring the web site domain. At this point, the model only repre-

sents the original web site. The next step consists of adding to the model the policies 

that describe the Web site behavior when navigating offline. Such policies are defined 

by decorating the model with the properties defined in Table 4. For example, the page 

“HOME” receives an icon initial to inform that it is the initial navigation page in of-

fline mode. Then, for every page that should be available in offline mode, the design-



13 

 

ers associate a property cacheable such as the page “ABOUT” and the page “project 

image”. In order to prevent the navigation to the page “NEWS” in an offline mode, 

the property nocacheable is associated to it. Only when all static properties have been 

set, the designer can use the tool Node Editor to define internal policies for the con-

tent.  

Table 4. Icons representing policies on node elements of the offline model.  

Element in the node Representation Description 

Name Text value The name of the node 

Accessible  The node could be visited from the actual one 

Initial  The node has been set as initial 

Current 
 

The user is visiting this node 

Visited 
 

The node has been visited 

Precacheable  The node has been set as “precacheable” 

Cached  The  node has been locally cached 

No Cacheable  The node has been set as “nocacheable” 

External  The node is external to the web site 

The tool Node Editor allows to visualize the Web page and the modify DOM ele-

ments as shown by Fig. 11. This is a visual tool, so it is possible to select the DOM 

elements and click on it and select “remove element”. It is worthy of notice that all 

nested elements to the DOM will be removed. Removed elements are marked in yel-

low in the Node Editor, as depicted Fig. 11.a. To change a link destination, the de-

signer has to select the link and then select a different node in the model as a new 

destination. Connections that have been modified in the offline model are marked in 

red as shown by Fig. 11.b (i.e. “LATEST NEWS” link at the page “Web Company”). 

             
       a)  Elements removal from page “CONTACT”                      b) Changing links destination.  

Fig. 11. Edition of DOM elements of a Web page with the tool Node Editor. 

In order to create an alternative connection between the page “OFFLINE PAGE” 

and the page “ABOUT”, the designer just needs to draw a new connection between 

these pages. As shown in Fig. 10.b, the offline model represent normal connections 

(which means connections that match to existing hyperlinks on the Web site) in black; 

online connections (those that are available online only) in green; offline connections 

are represented in red and alternative connections are depicted in orange.  

Once finished, the offline model is published with the original Web site. So that the 

users connect to the Web site the offline model is downloaded. The activation of the 

offline model only occurs when the users got interrupted and the connection is lost. In 



14 

 

such case the parser start transforming the local Web pages accordingly to the prede-

fined constraints. Then the graph featuring the offline model is shown as in Fig. 12. 

To navigate, users can click on the modified links embedded into pages or by select-

ing the nodes directly on the graph. 

 

Fig. 12. Visualization of the Web site and tool in offline mode (with zoom at right-side). 

5 Discussion and future work 
In this paper we have discussed some problems caused by interruptions whilst work-

ing with the Web application and, in particular, the interruptions caused by loss of 

connectivity. For that we have proposed a model-based approach that is delivered 

with a tool support for helping to build Web sites resilient to interruptions. The over-

all approach is quite simple: we combine a navigation model to exploit resources that 

are already stored in the local cache. The navigation model is tuned to work in a spe-

cific way when users are offline. It is worthy of notice that the so-called offline navi-

gation model is a piece of design that is affected by the designers’ intentions when 

designing the offline navigation. Moreover, the model is subject to the actual user 

interaction with the Web site. The current implementation exploits resources from 

HTML5 and in particular the API Web storage.  

The model and the tools presented here are a proof of concept. Despite of the evi-

dent limitations, it allows the discussion about the problems related to the loss of con-

nectivity and poses fundamental questions about whether or not we can provide solu-

tions to make Web site more resilient to interruptions.  

The approach can be used to build new Web sites built from scratch but it also can 

be used as a mapping support for describing offline navigation of existing Web site. 

Currently the only work with static Web pages but the overall model can be extended 

to work with dynamic pages. Nonetheless, much more remains to be done including 

empirical studies with end-users. Moreover, synchronizations mechanisms must be 

addressed in future research.  

6 References 
1. Bailey, B. P., Konstan, J.A., Carlis, J.V. The effects of interruptions on task performance, 

annoyance, and anxiety in the user interface. INTERACT’2001, pages 593-601. IOS Press. 

2. Benson, E., Marcus, A., Karger, D., Madden, S. Sync kit: a persistent client-side database 

caching toolkit for data intensive websites. In WWW'10. ACM. pp. 121-130.  

3. Cannon, B., Wohlstadter, E. Automated object persistence for JavaScript. In WWW'10, 

ACM, pp. 191-200. 



15 

 

4. Chang, H., Tait, C., Cohen, N., Shapiro, M., Mastrianni, S., Floyd, R., Housel, B., Lind-

quist, D. Web browsing in a wireless environment: disconnected and asynchronous opera-

tion in ARTour Web Express. In ACM/IEEE MobiCom'97. ACM, pp. 260-269. 

5. Che, H.,Tung, Y.,Wang,Z. Hierarchical Web Caching Systems: Modeling, Design and Ex-

perimental Results. IEEE Journal on Selected Areas in Communications, v. 20, n.7,  2002. 

6. Czerwinski, M., Horvitz, E., and Wilhite, S. 2004. A diary study of task switching and in-

terruptions. In CHI '2004. ACM, pp. 175-182.  

7. Goncalves, E.,  Leitao, A. M. Offline execution in workflow-enabled Web applications. In 

QUATIC '2007. IEEE Computer Society, Washington, DC, USA, 204-207.  

8. Gutwin, C., Graham, N., Wolfe, C., Wong, N., de Alwis, B. Gone but not forgotten: de-

signing for disconnection in synchronous groupware. In CSCW '10. ACM, pp. 179-188. 

9. Kao, Y-W., Lin, C., Yang, K., Yuan, S-M. A Web-based, Offline-able, and Personalized 

Runtime Environment for executing applications on mobile devices. Comput. Stand. Inter-

faces 34, 1 (January 2012), 212-224.  

10. McFarlane D. C. (1999) Coordinating the interruption of people in human-computer inter-

action. In INTERACT'1999, Amsterdam: IOS Press, pp. 295-303 

11. Mark, G., Gudith, D., and Klocke, U. 2008. The cost of interrupted work: more speed and 

stress. In SIGCHI’2008. ACM, pp. 107-110.  

12. Mehta,N., Swart,G., Divilly,C.,Motivala, A. Mobile AJAX Applications: Going Far With-

out The Bars. 2nd IEEE Workshop on Hot Topics in Web Systems and Technologies, 2008. 

13. O'Conaill, B., Frohlich, D. (1995) Timespace in the workplace: Dealing with interruptions, 

in: Human Factors in Computing Systems. CHI'95, New York: ACM Press, 262-263 

14. Palanque, P., Winckler, M., Ladry, J-F., ter Beek, M., Faconti, G., Massink, M. A Formal 

Approach Supporting the Comparative Predictive Assessment of the Interruption-

Tolerance of Interactive Systems. In ACM EICS’2009. ACM Press, pp. 211-220.  

15. Pinheiro da Silva, P. User Interface declarative models and Development environments : A 

survey. DSV-IS 2000 : design, specification, and verification : interactive systems. Limer-

ick, Ireland. Springer LNCS 1946, pp. 207-226 ISBN 3-540-41663-3. 

16. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (Eds.): Web Engineering: Modelling and 

Implementing Web Applications. Human-Computer Interaction Series, Springer 2008. 

17. Speier, C., Vessey, I., Valacich, J. S. The effects of interruptions, task complexity, and in-

formation presentation on computer-supported decision-making performance, Decision 

Sciences, 34 (4), 771-797. 

18. Tatsubori, M., Suzumura, T. HTML templates that fly: a template engine approach to au-

tomated offloading from server to client. In WWW '2009. ACM, pp. 951-960. 

19. ter Beek, M., Faconti, G., Massink, M., Palanque, P., Winckler, M. Resilience of Interac-

tion Techniques to Interrupts: A Formal Model-based Approach. In INTERACT 2009. 

LNCS 5726, pp. 494-509, 2009. 

20. Trafton, J. G., Monk,C. A. (2007). Task Interruptions. Reviews of Human Factors and Er-

gonomics, 3, 111-126. 

21. Trafton J. G., Altmann E. M., Brock D. P. & Mintz F. E. (2003) Preparing to resume an in-

terrupted task: Effects of prospective goal encoding and retrospective rehearsal, Interna-

tional Journal of Human-Computer Studies, 58 (5), 583-603. 

22. Yang, Y. Supporting Online Web-Based Teamwork in Offline Mobile Mode Too. In 

WISE'2000, Vol. 1. IEEE Computer Society, Washington, DC, USA. 

23. W3C. A vocabulary and associated APIs for HTML and XHTML. W3C Candidate Rec-

ommendation (17 December 2012). At: http://www.w3.org/TR/2012/CR-html5-20121217 

24. W3C. Web Storage (13 February 2013). At: http://dev.w3.org/html5/webstorage/. 

25. Winckler, M., Palanque, P. StateWebCharts: A Formal Description Technique Dedicated 

to Navigation Modelling of Web Applications. DSV-IS 2003: 61-76. 

http://www.informatik.uni-trier.de/~ley/db/series/hci/index.html
http://www.informatik.uni-trier.de/~ley/db/series/hci/RossiPSO08.html
http://www.w3.org/TR/2012/CR-html5-20121217
http://dev.w3.org/html5/webstorage/

