
UNIVERSIDAD DE CASTI

An Empirical Evaluation of Requirement

Engineering Techniques for

Collaborative Systems
Technical Report # DIAB

Miguel A. Teruel, Elena Navarro, Víctor López

A collaborative system is a distributed software which allows several users to work together and carry out

collaboration, communication and coordination tasks. To perform these tasks, the users have to be aware of

other user’s actions, usually by means of a set of awareness techniques. When we are defining a collaborative

system, the awareness techniques can be considered as non

quality factors, such as usability. However, serious flaws can be fo

systems if we use the usual Requirement Engineering techniques available, because their expressiveness

limitations when dealing with non

introduced to determine if these techniques are really appropriate to model groupware requirements and

which is the best approach to specify this kind of systems. With this aim, a collaborative text editor is used to

evaluate whether the current techniques for Requireme

relation between awareness capabilities and standard quality factors.

UNIVERSIDAD DE CASTILLA-LA MANCHA

An Empirical Evaluation of Requirement

Engineering Techniques for

Collaborative Systems
Technical Report # DIAB-11-01-1

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero, Pascual Gonz

January 2011

A collaborative system is a distributed software which allows several users to work together and carry out

collaboration, communication and coordination tasks. To perform these tasks, the users have to be aware of

, usually by means of a set of awareness techniques. When we are defining a collaborative

system, the awareness techniques can be considered as non-functional requirements bounded to some

quality factors, such as usability. However, serious flaws can be found during the specification of these

systems if we use the usual Requirement Engineering techniques available, because their expressiveness

limitations when dealing with non-functional requirements. In this report an empirical evaluation is

determine if these techniques are really appropriate to model groupware requirements and

which is the best approach to specify this kind of systems. With this aim, a collaborative text editor is used to

evaluate whether the current techniques for Requirement Engineering are appropriated or not, exploiting the

relation between awareness capabilities and standard quality factors.

An Empirical Evaluation of Requirement

Engineering Techniques for

Collaborative Systems

Jaquero, Francisco Montero, Pascual González

A collaborative system is a distributed software which allows several users to work together and carry out

collaboration, communication and coordination tasks. To perform these tasks, the users have to be aware of

, usually by means of a set of awareness techniques. When we are defining a collaborative

functional requirements bounded to some

und during the specification of these

systems if we use the usual Requirement Engineering techniques available, because their expressiveness

functional requirements. In this report an empirical evaluation is

determine if these techniques are really appropriate to model groupware requirements and

which is the best approach to specify this kind of systems. With this aim, a collaborative text editor is used to

nt Engineering are appropriated or not, exploiting the

An Empirical Evaluation of Requirement

Engineering Techniques for Collaborative Systems

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero, Pascual González

LoUISE Research Group

Computing Systems Department

University of Castilla - La Mancha

{MiguelAngel.Teruel, Elena.Navarro, VictorManuel.Lopez, Francisco.MSimarro, Pascual.Gonzalez}@uclm.es

Abstract— A collaborative system is a distributed software

which allows several users to work together and carry out

collaboration, communication and coordination tasks. To

perform these tasks, the users have to be aware of other user’s

actions, usually by means of a set of awareness techniques.

When we are defining a collaborative system, the awareness

techniques can be considered as non-functional requirements

bounded to some quality factors, such as usability. However,

serious flaws can be found during the specification of these

systems if we use the usual Requirement Engineering

techniques available, because their expressiveness limitations

when dealing with non-functional requirements. In this paper

an empirical evaluation is introduced to determine if these

techniques are really appropriate to model groupware

requirements and which is the best approach to specify this

kind of systems. With this aim, a collaborative text editor is

used to evaluate whether the current techniques for

Requirement Engineering are appropriated or not, exploiting

the relation between awareness capabilities and standard

quality factors.

I. INTRODUCTION

At the end of the eighties, Computer Supported
Cooperative Work (CSCW) emerged as a new area of
research that focuses on the study of the human behavior
in the working context and also on the design of tools
(groupware) that support workgroups [1]. The problem of
this kind of systems is to maintain so called the
workspace awareness.

Workspace Awareness (WA) is the up-to-the-moment
understanding of another person’s interaction within a
shared workspace. Workspace awareness involves
knowledge about where others are working, what they are
doing now, and what they are going to do next [2].

In a face-to-face workspace, awareness of someone
else is relatively easy to maintain, and the mechanisms of
collaboration are natural, spontaneous, and unforced.
Unfortunately, workspace awareness is much harder to
maintain in groupware workspaces than in face-to-face

environments, and it is often difficult or impossible to
determine who else is in the workspace, where they are
working, and what they are doing.

Gutwin [2] presents a conceptual framework to
establish what information makes up workspace
awareness. The basic the elements is the set of questions
“who, what, where, when, and how”. That is, when we
work with others in a physical shared space, we know who
we are working with, what they are doing, where they are
working, when various events happen, and how those
events occur.

TABLE 1: ELEMENTS OF WORKSPACE AWARENESS RELATED TO THE
PRESENT

Category Element Specific questions

Who

Presence

Identity

Authorship

Is anyone in the workspace?

Who is participating? Who is that?

Who is doing that?

What
Action
Intention

Artifact

What are they doing?
What goal is that action part of?

What object are they working on?

Where

Location

Gaze
View

Reach

Where are they working?

Where are they looking?
Where can they see?

Where can they reach?

TABLE 2: ELEMENTS OF WORKSPACE AWARENESS RELATING TO THE
PAST

Category Element Specific questions

How
Action history

Artifact history

How did that operation happen?

How did this artifact come to be in
this state?

When Event history When did that event happen?

Who Presence history Who was here, and when?

Where Location history Where has a person been?

What Action history What has a person been doing?

Tables 1 and 2 show these elements and list the
questions that each element can answer. Table 1 contains
those elements that relate to the present, and Table 2
contains those that relate to the past. The elements are all
commonsense things that deal with interactions between a
person and the environment.

In this context a proper specification of the system,
identifying clearly the requirements of the system-to-be,
specially the awareness requirements, is one of the first
steps to overcome this problem. The awareness
requirements can be considered non-functional
requirements (NFR) or extra-functional requirements
(EFR), because they are usually constraints regarding
quality (e.g. functionality, usability) [3]. However, the
specification of this kind of requirements is not a trivial
issue because of the high number and diversity of
requirements they are related to, and their high impact in
terms of the final architecture of the system. Therefore,
the proper selection of the requirement specification
technique becomes a challenging and important decision.

In this paper, we study the applicability of three
Requirement Engineering (RE) techniques (Use Cases
[4], Viewpoints [5], and Goal-Oriented[6]) for the
specification of collaborative systems, paying special
attention to the awareness requirements. In order to carry
out this study, we have specified some awareness
requirements of a real system (Google Docs [7]). Once
the system is modeled, an empirical analysis has been
done in order to compare these different techniques.

This paper is structured as follows. After this
introduction, in section II, we analyze three RE
techniques applicable to awareness requirements for
CSCW systems. In section III, we present an example of a
widely known collaborative system: Google Docs. In
section IV, an empirical evaluation of the use of the
previous techniques for modeling awareness requirements
in Google Docs is presented. In section V, we propose our
conclusions and future works.

II. RE TECHNIQUES FOR COLLABORATIVE SYSTEMS

In order to enhance the legibility of this work, in the
following sections we describe briefly the main concepts
underlying the three analyzed RE techniques, namely:
Goal-Oriented, Use Cases and Viewpoints.

A. Goal-Oriented requirement specification
In the context of Requirements Engineering, the Goal-

Oriented Requirements Engineering approach [8] has
proven to be useful in eliciting and defining requirements.
More traditional systems analysis techniques, such as Use
Cases, only focus on establishing the features (i.e.
activities and entities) that a system will support.
Nevertheless, Goal-oriented proposals focus on why
systems are being constructed by providing the
motivation and rationale to justify the Software
Requirements. They are not only useful for analyzing
goals, but also for elaborating and refining them.

A Goal Model is built as a directed graph by means of
a refinement of the systems goals (see Figure 5). This
refinement lasts until goals have enough granularity and
detail so as to be assigned to an agent (software or
environment) so that they are verifiable within the
system-to-be. This refinement process is performed by
using AND/OR/XOR refinement relationships.

There are a wide number of proposals ranging from
elicitation to validation activities in the RE process (see
[9] for an exhaustive survey). However, some concepts
are common to all of them:

•••• Goal describes why a system is being developed, or
has been developed, from the point of view of the
business, organization or the system itself. In order to
specify it, both functional goals, i.e., expected services
of the system, and softgoals related to the quality of
service, constraints on the design, etc should be
determined.

•••• Agent is any active component, either from the system
itself or from the environment, whose cooperation is
needed to define the operationalization of a goal, that
is, how the goal is going to be provided by the
system-to-be. This operationalization of the goals is
exploited to maintain the traceability throughout the
process of software development.

•••• Refinement Relationships: AND/OR/XOR
relationships allow the construction of the goal model
as a directed graph. These relationships are applied by
means of a refinement process (from generic goals
towards sub-goals) until they have enough granularity
to be assigned to a specific operationalization.

It must be pointed out that one of the main advantages
exhibited by this approach is that it introduces
mechanisms for reasoning about the specification. It
facilitates the process of evaluating designs or alternative
specifications of the system-to-be. One of them is the
framework proposed by Giorgini et al. [10] that includes
AND/OR relationships among goals, but also allows one
to define qualitative goal relationships, named
contribution, to describe how much an operationalization
contributes to meet a goal. In addition to this qualitative
formalization, this framework consists in a label
propagation algorithm and quantitative semantics for the
new relationships.

Cysneiros and Yu have also proposed [6] a framework
with high power expressive for dealing with NFRs
working with them from the early stages of the software
development. This framework considers NFR as goals
that might conflict among each other and must be
represented as softgoals to be satisfied. The softgoal
concept was introduced to cope with the abstract and
informal nature of NFR. The softgoals decomposition and
treatment are similar to the above mentioned goals.

B. Use Cases
They are perhaps one of the most popular approaches

to requirements specification. They have been widely
embraced by the industrial community due to their
straightforward notation and application. These properties
allow stakeholders to easily understand them, and this
contributes to the elicitation and validation of the
requirements. Another factor that denotes their popularity
is that Use Cases are the only notation included in UML
for requirement modeling.

According to Cockburn [4], a use case captures a
contract between the stakeholders of a system about its
behavior. The use case describes the system’s behavior
under various conditions as it responds to a request from
one of the stakeholders, called the primary actor. The
primary actor initiates an interaction with the system to
accomplish a goal. The system responds, protecting the
interests of all the stakeholders. Different sequences of
behavior, or scenarios, can unfold, depending on the
particular requests made and conditions surrounding the
requests. The use case collects together those different
scenarios.

The relationships between different use cases and
actors are shown in a UML use cases diagram (see Figure
2) [11]. In this kind of diagrams, we find four types of
relationships:

•••• Include: a directed Relationship between two use
cases, implying that the behavior of the included use
case is inserted into the behavior of the including use
case.

•••• Extend: the behavior of the extension use case may be
inserted into the extended use case under some
conditions.

•••• Generalization: a given use case may have common
behaviors, requirements, constraints, and assumptions
with a more general use case.

•••• Association: an association exists whenever an actor is
involved in an interaction described by a use case.

Using these diagrams, we are able to represent
functional requirements. Nevertheless, the use case
diagram proposed by Booch et al [11] does not provide us
with enough expressiveness for non-functional
requirements, being a text template called Supplementary
Specification the only available alternative. This lack of
expressiveness has several associated problems such as
loss of traceability during the software development
process because no automatic support is provided to
establish the relation between use cases and NFR.

C. Viewpoints
In this approach, the system-to-be is defined according

to the context where it is going to perform its main
computation. With this aim, it is defined considering all
the involved stakeholders and assigning a different
viewpoint to each party. Each viewpoint is a model that

encapsulates a partial knowledge about the system-to-be
and the domain, specified in a particular, suitable
representation scheme [5]. Therefore, the system
requirements are described by means of a combination of
viewpoints, each one created by a different person
implicated in the design process. An example of a
viewpoint represented by a Petri Net can be seen in Figure
7.

There is not a standard notation that can be used to
describe Viewpoints but every proposal identifies
different concepts as relevant for the description of a
Viewpoint. One of the most accepted proposals is the one
presented by Nuseibeh et al. that entails five slots [12]:

• Style slot: description of the representation scheme
used by the viewpoint.

• Work plan slot: description of the development
actions, process and strategy of the viewpoint.

• Domain slot: identifies the area of concern of the
viewpoint with respect to the overall system under
development.

• Specification slot: describes the viewpoint domain in
the notation described in the style slot.

• Work record: maintains the development state and
history of the viewpoint specification (in terms of the
work plan actions performed)

One of the main problems of this approach is that it
allows each stakeholder to use a different that notation
more appropriate to the domain that the viewpoint
belongs to. However, to avoid the great ambiguity
inherent to this open representation, Finkelsetin et al. [5]
propose the use of templates based on empty viewpoints
that have some slots partially filled in. Specifically, they
have defined the following templates: (i) Functional
Hierarchy; (ii) System Block Diagram; (iii) Action
Tables; (iv) Object Structure; (v) Petri Net.

The main advantage this approach has is the facility to
find out conflicts between requirements stated by
different stakeholders. In addition, some notations provide
support for bottom-up and top-down traceability. For
instance, Nuseibeh et al. [12] use the work record (Figure
3) to document every action or process the viewpoint has
suffered throughout its history. They also provide specific
notation to deal with non-functional requirements.

III. CASE STUDY

As case study to assess how these requirement
specification techniques perform for collaborative system
Google Docs [7] (see Figure 1) was used. Google Docs is
a free, Web-based word processor, spreadsheet,
presentation, form, and data storage service provided by
Google. It allows users to create and edit documents
online collaborating in real-time with other users remotely
located via the Internet. Google Docs serves as a
collaborative tool for editing documents so that they can
be shared, opened, and edited by multiple users at the
same time. This system was selected for our analysis

because it is widely-known and it features a clear
collaborative focus as its main goal.

Figure 1. Google Docs interface

As a starting point for our evaluation of the
requirements techniques, we identified those workspace
awareness techniques implemented in Google Docs from
the set of techniques proposed by Gutwin [13]. These
techniques, which are commented in the following
subsections, can be found also as patterns for user
collaboration in [14].

A. Telepointers
This technique allows us to be aware of the other user’s
cursor position and whether they have selected a text
fragment or not (see Figure 2). When a remote user is
writing, we can realize it in real-time. Close to the cursor
the user’s nickname appears overlapped with the text. In
addition, if the user selects some text, it is highlighted by
marking it with the user's color.

Figure 2. Remote cursor and remotely selected text fragment

B. Avatars
Google Docs does not implement avatars itself.

Instead it shows a list of participants that are editing
simultaneously the same document (see Figure 3). By
using this list, users can communicate with each other by
using the chat, which can be shown or hidden at any time.
In addition, by using this chat view, users can notice the
color assigned to any of her/his collaborators.

Figure 3. Two users chatting through the participant list

C. Expressing information about authorship / about the
past

These two awareness techniques are used to make
available to the users the history of changes carried out.
They have been implanted by Google Docs using a
revision history. It allows the system to keep track of all
the changes made by the users to the different types of
documents being edited (see Figure 4). This revision
history provides a mean for users to review the changes
made to the documents. In this revision history the
changes made by each user are denoted by using different
colors. In addition, if the change made is a deletion, then
the text will be also in strikethrough style. This
functionality can be activated or deactivated at anytime.
This revision history has two levels of detail, depending
on the amount of information shown in it. The user may
switch between these two levels of detail at anytime.

Figure 4. Revision story showing text elimination

IV. EMPIRICAL EVALUATION

To evaluate the different RE techniques mentioned in
section III, we are going to model the above mentioned
awareness features using each one of these techniques.
First, we have to distinguish what Google Docs
characteristics can be modeled by using a functional or
non-functional requirement. The telepointer and avatar
techniques result in NFRs because they contribute to
increase some quality in use, such as usability.
Nevertheless, the third characteristic (Expressing
information about authorship / about the past), despite
contributing positively to the above mentioned quality
features, it should be considered functional, due to the

historical information storage and the rollback function.
In addition, we have also associated the awareness
functionalities both with the three characteristics of the
CSCW systems (collaboration, communication and
coordination) and, with the characteristics of the ISO/IEC
25010, Software engineering-Software product Quality
Requirements and Evaluation (SQuaRE) Quality model
[15]. This standard will help us to organize properly the
specification of the system following the
recommendations of Moreira et al.[16]. The evaluation is
presented next following the chronological order it was
carried out. First, in section A it is described how the case
study was modeled applying the three approaches.
Second, in section B the main results of the evaluation are
presented.

A. Modeling the Case Study

After analyzing the characteristics of Google docs
described in section III, and according to the Gutwin's
framework for collaborative systems, we have specified
the systems FRs (Table 3 illustrates a partial description
of the system).Next, as can be observed in Table 4, each
awareness functionality detected in the system was related
to some quality factors of the SQuaRE standard in order
to identify the NFR of Google Docs. We would like to

highlight that here we are describing partially the
requirements of Google docs to facilitate the
understandability of the evaluation.

TABLE 3. RELATION BETWEEN AWARENESS ELEMENTS AND FRS

Category Element Functional Requirement

Who Presence Know who is participating

What
Where

Action
Location

See other user’s actions

Who

When

Authorship

Event history
Keep the changes’ authorship

TABLE 4. RELATION BETWEEN QUALITY FACTORS AND AWARENESS
FUNCTIONALITIES

Quality Factor Awareness Functionality

Functional Suitability

Revision History

Telepointers

Participant List

Reliability Revision History

Performance Efficiency Telepointers

Operability
Telepointers
Participant List

Security Revision History

Figure 5. Goal-Oriented model

1) Goal-Oriented requirement specification

In order to carry out the specification of Google Docs,
the i* notation [17] was used, as it is the most widely
known and accepted proposal in Goal-Oriented. Using
this notation, we specified each one of the SQuaRE
quality factors [15], previously identified in Table 4, as
root softgoals of the system as shown in Figure 5. These
softgoals were refined into other softgoals selecting those
quality factors of SQuaRE standard more appropriate for
the system. Each one of the awareness functionalities
were specified as resources provided by the system that
contribute positively to satisfy some of the softgoals, that
is, some quality factors. However, it can be noticed that
also some of them contribute negatively because the
constraints they impose. This is the case of remote
cursors, because they increase the resource utilization.
Moreover, the ease of use depends, among other factors,
on the user’s experience with this kind of systems. In

addition, the three FR identified in Table 3 have been
specified as goals of the system that have dependency
relationships with the resources. We have also specified
how the awareness techniques contribute positively to the
functional aspects of collaborative systems specified as
tasks in the goal model.

2) Use Cases

In order to represent the system using this RE
technique, we have come up against a problem: the lack
of expressiveness of use case diagrams (as defined in
UML [11]) to describe NFR. Therefore, if this notation is
used the only alternative is to describe the identified FR,
as shown in Figure 6(a), and exploit a different document,
such as the supplementary specification, for the NFR. As
was stated above, this alternative presents some
limitations, such as the poor support for traceability
between FRs and NFRs.

Figure 6. Use Case Diagram with extension for NFRs

In order to overcome the lack of expressiveness of the
Use Cases, we have decided to exploit the extension
proposed by Moreira et al. [18]. This extension allows
one to describe some stereotypes to describe quality
factors such as security or reliability that can be applied to
use cases to specify NFR. Using this extension the system
requirements were specified as shown in Figure 6 (b). As
can be observed, this alternative does allow us to describe
NFR and trace them properly.

3) Viewpoints

In order to apply this RE technique, it was necessary
to define firstly the representation style to specify the
viewpoints of the system. For its definition, it was
considered a must that this style allows us to relate the
awareness functionalities to the quality factors. The
decision made was to define a viewpoint representation
style formed by two objects (quality factors and
awareness requirements) and two relations between that
objects (compositions and contributions). In addition, it
was necessary to define the domain for which to apply the

technique, that is, awareness techniques and quality
factors.

Taking into account the representation style, the
quality engineer’s viewpoint was defined as illustrated in
Figure 7. As can be observed, the quality factors were
specified by means of a tree whose leaves are the
awareness techniques of GoogleDocs. In this way, it can
be established a direct relationships between the quality
factors and the functionality of the system.

B. Evaluating RE techniques
Using as input the different specifications of the

system, the evaluation of the different RE techniques was
carried out by using DESMET [19]. It is a set of
techniques applicable for evaluating both Software
Engineering methods and tools. Specifically, we have
used the method based on qualitative case study that
describes a feature-based evaluation. Following the
guidelines of this technique, we have prepared an initial
list of features that a RE technique for collaborative
systems must accomplish, as described in Table 5. As can

be observed, some features are directly related to the
specification of NFRs.

Figure 7. Viewpoint for Awareness Requirements and Quality Factors

TABLE 5. LIST OF FEATURES FOR MODELS EVALUATION

Feature Description

Awareness

Representation

The model should allow one to represent the

awareness characteristics of the system

Quality Factors

Representation

The model must represent the SQuaRE

characteristics and sub-characteristics

NFR
Representation

The model should be able to represent NFRs
graphically

Hierarchical

Representation

The relation between the model elements should

be hierarchical

Standard

Representation

The model must be based on a widely extended

standard representation

Model
Complexity

The model complexity should not be too high

Quantitative

Model

The model must allow one to quantify the

relations between represented elements

Traceability
The represented requirements should be traceable

throughout the software development process

Once the previous table is filled in, DESMET
establishes that an importance degree should be assigned
to each identified feature. Specifically, the degrees to
apply are:

• M: Mandatory

• HD: Highly Desirable

• D: Desirable

• N: Nice to have

Using these degrees Table 6 was filled in. As can be
noticed, the most important features to be supported are
both the NFR representation and traceability required by
collaborative systems.

TABLE 6. IMPORTANCE OF THE FEATURES

Feature Importance

Awareness Representation M

Quality Factors Representation M

NFR Representation HD

Traceability HD

Quantitative Model D

Hierarchical Representation D

Standard Representation D

Model Complexity N

Next, we have established a scale to evaluate each one
of the described features. Specifically, we have used the
scale proposed in DESMET that has been described in
Table 7. This scale was employed to evaluate each feature
according to the following factors:

•••• CAT: Conformance Acceptability Threshold.

•••• CSO: Conformance score obtained for candidate
method.

Once each feature was evaluated, the difference
between CAT and CSO factors was computed as shown
in the column Difference (Dif) in Tables 8, 9, 10 and 11.

TABLE 7. JUDGEMENT SCALE TO ASSESS TOOL SUPPORT FOR A FEATURE

Generic
scale point

Definition of Scale point
Scale Point
Mapping

Makes things
worse

Cause Confusion. The way the feature is implemented makes it difficult to use and/or encouraged incorrect use of the
feature

-1

No support Fails to recognise it. The feature is not supported nor referred to in the user manual 0

Little support The feature is supported indirectly, for example by the use of other tool features in non-standard combinations. 1

Some support
The feature appears explicitly in the feature list of the tolls and user manual. However, some aspects of feature use are

not catered for.
2

Strong

support

The feature appears explicitly in the feature list of the tolls and user manual. All aspects of the feature are covered but

use of the feature depends on the expertise of the user
3

Very strong
support

The feature appears explicitly in the feature list of the tools and user manual. All aspects of the feature are covered and
the tool provides tailored dialogue boxes to assist the user.

4

Full support
The feature appears explicitly in the feature list of the tolls and user manual. All aspects of the feature are covered and

the tool provides user scenarios to assist the user such as “Wizards”.
5

Next, we should highlight that a variation of the
DESMET method has been used. Specifically, the

importance (Imp) of each feature has been weighted in a
scale from 1 to 4 (Nice to have – 1, Desirable – 2, Highly

Representation Style

Objects

Relations

Domain

Specification

Work Plan

Work Record

1. Keep the changes’ authorship

2. See the other user’s actions

3. Know who is participant

Check the contribution of awareness

requirements to the accomplishment of

quality factors

Revision history contribution checked

Telepointers contribution checked

Participant list contribution checked
Awareness Requirements and Quality

Factors

Quality Factor

Awareness

requirement

Part_of

Contribute_to

Software

product

quality

Functionality

Reliability

Performance

Operability

Security

1,2,3

1

2

2,3

1

Factor

Requirement

Mteruel

Awareness Requirements

Desirable– 3, Mandatory – 4). The importance was used
to compute the final score of each feature by multiplying
the Importance by the Difference. This calculation is
shown in the column Score (Sco) in Tables 8, 9, 10 and
11. Lastly, the final score of each technique (Total) was

obtained by adding the scores of all the features. This
framework has been used to evaluate the different RE
techniques studied. Note that two evaluations have been
performed for the Use Case technique depending on
whether it is able to represent NFRs or not.

TABLE 8. EVALUATION FOR GOAL-ORIENTED REQUIREMENT
SPECIFICATION

Feature Imp CAT CSO Dif Sco

Awareness Representation 4 5 5 0 0

Quality Factors
Representation

4 4 5 1 4

NFR Representation 3 3 5 2 6

Traceability 3 3 3 0 0

Quantitative Model 2 2 1 -1 -2

Hierarchical Representation 2 2 3 1 2

Standard Representation 2 2 2 0 0

Model Complexity 1 1 1 0 0

Total 10

TABLE 9. EVALUATION FOR USE CASE

Feature Imp CAT CSO Dif Sco

Awareness Representation 4 5 2 -3 -12

Quality Factors
Representation

4 4 0 -4 -16

NFR Representation 3 3 1 -2 -6

Traceability 3 3 1 -2 -6

Quantitative Model 2 2 0 -2 -4

Hierarchical Representation 2 2 0 -2 -4

Standard Representation 2 2 5 3 6

Model Complexity 1 1 3 3 3

Total -39

TABLE 10. EVALUATION FOR USE CASE WITH NFRS REPRESENTATION

Feature Imp CAT CSO Dif Sco

Awareness Representation 4 5 3 -2 -8

Quality Factors
Representation

4 4 4 0 0

NFR Representation 3 3 3 0 0

Traceability 3 3 3 0 0

Quantitative Model 2 2 0 -2 -4

Hierarchical Representation 2 2 1 -1 -2

Standard Representation 2 2 3 1 2

Model Complexity 1 1 2 1 1

Total -11

TABLE 11. EVALUATION FOR VIEWPOINTS

Feature Imp CAT CSO Dif Sco

Awareness Representation 4 5 1 -4 -16

Quality Factors

Representation
4 4 1 -3 -12

NFR Representation 3 3 0 -3 -9

Traceability 3 3 1 -2 -6

Quantitative Model 2 2 0 -2 -4

Hierarchical Representation 2 2 2 0 0

Standard Representation 2 2 0 -2 -4

Model Complexity 1 1 1 0 0

Total -51

Figure 8 shows graphically the scores obtained by
each one of the RE techniques. As can be observed, the
Goal-Oriented approach is the only one that has a positive
score. Despite this positive score, it has been negatively
evaluated for the Quantitative Model feature as i* only
provides a partial support for quantifying the relations
among requirements when using contribution links. The
use case technique fails basically to describe the
awareness model, since it does not support NFR. It also
fails in the Quantitative model as it does not provide any
assistance in this sense. Finally, it neither provides
support for hierarchical representation. The limitation for
NFR is overcome when UC-NFR is used, however, it
does provide no improvement for the other two
shortcomings. Finally, the less suitable technique to this
problem is the Viewpoint, as it lacks enough support for
most of the analyzed features.

Figure 8. Empirical analysis results

-60

-50

-40

-30

-20

-10

0

10

20

GO UC UC-NFR VP

Figure 9. Results relative to distinct features

In addition, as DESMET suggests, we have performed
a comparative of the percentage of each feature satisfied
by each RE technique analyzed as shown in Figure 9. It
should be highlighted that the no one of the analyzed
models is too complex what allows stakeholders to
convey the information of the system in an easier and
more intuitive way. Use Case technique stands out from
the other techniques for the standardization of its notation.
Regarding to the Hierarchical representation, it can be
stated that the analyzed techniques, except for the Use
Cases, provide some kind of support what helps to
manage the complexity of the specification. It is worth
noting that the Goal-Oriented technique is the only one
that has some support for Quantitative Model, despite the
relevance this feature should have, as it helps to analyze
the requirement specification. Regarding traceability
feature, Use Case technique is the most salient one
because of its integration in the Rational Unified Process
[20]. Both Goal-Oriented and UC-NFR stand out in the
representation of NFRs and quality factors. NFR
representation is a must for the specification of
collaborative systems. Unfortunately, Awareness
representation is poorly supported by all the
Requirements Engineering techniques analyzed, despite
being the most important feature for the specification of
collaborative systems. In the light of analysis of the
results, Goal-Oriented technique seems to be the most
promising approach to the specification of collaborative
systems.

V. CONCLUSIONS AND FURTHER WORK

After this empirical experiment, we can conclude that
the analyzed techniques are not fully appropriate to model
the awareness requirements for a collaborative system. In
fact, the only technique that obtained a positive result in
our empirical analysis was the Goal-Oriented requirement
specification.

These results support our initial hypothesis: a
Requirement Engineering technique to address the
problems detected during study is required. In this sense,
the Goal-Oriented technique seems to be the most

promising as it does provide support for NFR and a
Quantitative Model, in addition to its facilities to trace
properly both FR and NFR. However, it does exhibit
some shortcomings for dealing with awareness
representation that should be addressed before it is
applied for the specification of collaborative systems.
This constitutes one of our future and challenging works:
to adapt/extend this notation for this kind of systems.

In addition, another future work is the definition of
techniques that allow us to check that the defined model
can be used for validation purposes. That is, its
conformance with the SQuaRE Quality in Use factors
(usability, flexibility and safety) [15] should be evaluable
in an easy and intuitive way, once the system is fully
developed.

ACKNOWLEDGEMENTS

This work has been partially supported by grants
(PEII09-0054-9581) from the Junta de Comunidades de
Castilla-La Mancha and also by a grant (TIN2008-06596-
C02-01) from the Spanish Government.

REFERENCES

[1] José Luis Garrido, "AMENITIES: una Metodología para el
Desarrollo de Sistemas Cooperativos Basada en Modelos de
Comportamiento y Tareas," University of Granada, 2003.

[2] Carl Gutwin and Saul Greenberg, "A Descriptive Framework of
Workspace Awareness for Real-Time Groupware," Computer
Supported Cooperative Work, 2002.

[3] Hike Hochmuller, "Towards the Proper Integration of Extra-
Functional Requirements," Australasian Journal of Information
Systems, vol. 6, no. 2, 1999.

[4] Alistair Cockburn, Writting Effective Use Cases.: Addison-Wesley,
2000.

[5] Anthony Finkelsetin, Jeff Kramer, Bashar Nuseibeh, L. Finkelstein,
and Michael Goedicke, "Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development," International
Journal of Software Engineering and Knowledge Engineering, vol.
2, no. 1, pp. 31-57, 1992.

[6] Luiz Marcio Cysneiros and Eric Yu, "Non-Functional
Requirements Elicitation," in Perspectives on Software

0%

50%

100%

150%

200%

250%

300%

350%

Awareness

Representation

Quality Factors

Representation

NFR

Representation

Traceability Quantitative

Model

Hierarchical

Representation

Standard

Representation

Model

Complexity

GO

UC

UC-NFR

VP

Requirements, Julio Cesar Sampaio do Prado Leite and Jorge
Horacio Doorn, Eds.: Springer, 2003, ch. 6.

[7] Google Inc. (2010) Google Docs. [Online]. http://docs.google.com

[8] Axel van Lamsweerde, "Goal-Oriented Requirements Engineering:
A Guided Tour," in Proceedings 5th IEEE International
Symposium on RE, Toronto, 2001, pp. 249-263.

[9] Evangelia Kavakli and Pericles Loucopoulos, "Goal Modeling in
Requirements Engineering: Analysis and Critique of Current
Methods," Information Modeling Methods and Methodologies, pp.
102-124, 2005.

[10] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and
Roberto Sebastiani, "Formal Reasoning Techniques for Goal
Models," Journal on Data Semantics, vol. 2800/2003, pp. 1-20,
2004.

[11] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified
Modeling Language User Guide.: Addison Wesley, 2005.

[12] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein, "A
Framework for Expressing the Relationships Between Multiple
Views in Requirements Specification," IEEE Transactions on
Software Engineering, vol. 20, no. 10, 1994.

[13] Carl Gutwin, "Workspace Awareness in Real-Time Distributed
Groupware," in HCI '96 Proceedings of HCI on People and
Computers XI, 1996, pp. 281-298.

[14] Till Schümmer and Stephan Lukosch, Patterns for Computer-
Mediated Interaction.: John Wiley & Sons Ltd, 2007.

[15] Software engineering-Software product Quality Requirements and
Evaluation (SQuaRE) Quality model.

[16] Ana M. D. Moreira, João Araújo, and Awais Rashid, "A Concern-
Oriented Requirements Engineering Model," in CAiSE, 2005, pp.
293-308.

[17] Xavier Franch, "On the Lightweight Use of Goal-Oriented Models
for Software Package Selection," in CAiSE, 2005, pp. 551-566.

[18] Ana Moreira, João Araújo, and Isabel Brito, "Crosscutting Quality
Attributes for Requirements Engineering," in SEKE, 2002, pp. 167-
174.

[19] Barbara Kitchenham, "DESMET: A method for evaluating
Software Engineering methods and tools," Department of
Computer Science, University of Keele, 1996.

[20] Philippe Kruchten, The Rational Unified Process: An Introduction,
2nd ed.: Addison Wesley, 2000.

