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Abstract— The provision of Quality of Service (QoS)
in computing and communication environments has been
the focus of much discussion and research in academia
during the last decades. This interest in academia has been
renewed by the growing interest on this topic in industry
during the last years. A key component for networks
with QoS support is the egress link scheduling algorithm.
Apart from providing a good performance in terms of, for
example, good end-to-end delay (also called latency) and
fair bandwidth allocation, an ideal scheduling algorithm
implemented in a high-performance network with QoS
support should satisfy other important property which is to
have a low computational and implementation complexity.

In this paper, we propose specific implementations
(taking into account the characteristics of current high
performance networks) of several fair-queuing scheduling
algorithms and compare their complexity in terms of
silicon area and computation delay. In order to carry out
this comparison, we have performed our own hardware
implementation for the different schedulers. We have
modeled the schedulers using the Handel-C language and
employed the DK design suite tool from Celoxica in
order to obtain hardware estimates on silicon area and
arbitration time.

Index Terms— Scheduling algorithms, interconnection
networks, Quality of Service, Advanced Switching, Infini-
Band, hardware implementation, complexity stimation.

I. I NTRODUCTION

The evolution of the interconnection network
technology has been constant along the previous
decades. The speed and capacity of various com-
ponents in a communication system, such as links,
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switches, memory, and processors, have increased
dramatically. Moreover, network topologies have
become more flexible, and the efficiency of switch-
ing, routing and flow control techniques have been
improved.

The advent of high-speed networking has intro-
duced opportunities for new applications. Current
packet networks are required to carry not only traffic
of applications, such as e-mail or file transfer, which
does not require pre-specified service guarantees,
but also traffic of other applications that requires dif-
ferent performance guarantees, like real-time video
or telecommunications [20]. The best-effort service
model, though suitable for the first type of ap-
plications, is not so for applications of the other
type [23]. Even in the same application, different
kinds of traffic (e.g. I/O requests, coherence con-
trol messages, synchronization and communication
messages, etc.) can be considered, and it would be
very interesting that they were treated according to
their priority [10].

The provision of QoS in computing and commu-
nication environments has been the focus of much
discussion and research in academia during the last
decades. This interest in academia has been renewed
by the growing interest on this topic in industry
during the last years. A sign of this growing interest
in industry is the inclusion of mechanisms intended
for providing QoS in some of the last network stan-
dards like Gigabit Ethernet [26], InfiniBand [15],
or Advanced Switching (AS) [1]. An interesting
survey with the QoS capabilities of these network
technologies can be found in [24].

A common characteristic of the specifications of
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these network technologies intended to provide QoS
are the use of a reduced set of Virtual Channels
(VCs) and an egress link scheduler to arbitrate
among the traffic transmitted in each VC. These
mechanisms permit us to aggregate traffic with sim-
ilar characteristics in the same VC and to provide
each VC with a different treatment according to
its requirements, at the stile of the differentiated
services (DiffServ) QoS model [6], [5].

A key component for networks with QoS support
is the output (or egress link) scheduling algorithm
(also called service discipline) [11], [14], [37]. In
a packet-switching network, packets from different
flows will interact with each other at each switch.
Without proper control, these interactions may ad-
versely affect the network performance experienced
by clients. The scheduling algorithm, which selects
the next packet to be transmitted and decides when it
should be transmitted, determines how packets from
different flows interact with each other. Therefore,
the scheduling algorithm plays an important role to
perform the traffic differentiation that is necessary
to provide QoS.

Apart from providing a good performance in
terms of, for example, good end-to-end delay (also
called latency) and fair bandwidth allocation, an
ideal scheduling algorithm implemented in a high-
performance network with QoS support should sat-
isfy other important property which is to have a
low computational and implementation complexity
[28]. This is because in order to achieve a good
performance, the time required to select the next
packet to be transmitted must be smaller than the
average packet transmission time. This means that
the scheduler computation time must be very small,
if we consider the high speed of high-performance
networks. Moreover, a low complexity is required
in order to be able to implement the scheduler in
a small silicon area (note that high-performance
switches are usually implemented in a single chip).

The design of a traffic scheduling algorithm in-
volves an inevitable trade-off among the above prop-
erties. Many scheduling algorithms have been pro-
posed for that. Among them, the “sorted-priority”
family of algorithms are known to offer very good
delay [31]. However, their computational complex-
ity is very high, making their implementation in
high-speed networks rather difficult. In order to
avoid the complexity of the sorted-priority ap-
proach, the Deficit Round Robin (DRR) algorithm

[27] has been proposed. The main problem of this
algorithm is that depending on the situation the
latency can be very bad.

On the other hand, table-based schedulers are
intended to provide a good latency performance
with a low computational complexity. This ap-
proach is followed in [9] and in two of the last
high-performance network interconnection propos-
als: Advanced Switching (AS) [1] and InfiniBand
(IBA) [15]. However, as we will see, these sched-
ulers do not work properly with variable packet
sizes, as is usually the case in current network
technologies. This is the reason because in [17] we
proposed a new table-based scheduler that works
properly with variable packet sizes. Moreover, we
proposed a methodology to configure this scheduler
in such a way that it permits us to decouple partially
the bounding between the bandwidth and latency
assignments. We called this new scheduler Deficit
Table scheduler, or just DTable scheduler.

We can measure the complexity of a scheduler
based on two parameters: Silicon area required
to implement the scheduling mechanism and time
required to determine the next packet to be trans-
mitted. A short scheduling time is an efficiency
requirement. The next packet to be transmitted
should be chosen during the transmission time of
the last packet which was selected by the scheduler.
This is necessary in order to be able to send pack-
ets one after another without letting gaps between
them. This requirement takes more importance in
high-performance networks due to their high speed.
Moreover, switches of high-performance intercon-
nection technologies are usually implemented in a
single chip. Therefore, the silicon area required to
implement the various switch elements is a key de-
sign feature. Note, that a scheduling algorithm must
be implemented in each egress link and thus, the
silicon area required to implement the scheduling
algorithm should be as small as possible.

In this paper, we propose specific implemen-
tations (taking into account the characteristics of
current high performance networks) of several fair-
queuing scheduling algorithms and compare their
complexity in terms of silicon area and computation
delay. The scheduling algorithms that we have cho-
sen for this comparison are the Self-Clocked Fair
Queuing (SCFQ) [13], the DRR, and the DTable.
We have chosen the SCFQ algorithm as an example
of “sorted-priority” algorithm, the DRR algorithm
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because of its very small computational complexity,
and the DTable as an intermediate proposal. In the
case of the SCFQ and DRR schedulers, we use
the credit aware versions of both algorithms that
we proposed in [18] for being used in networks
with a link-level flow control network, which is
the case in most current high-performance network
technologies.

In [33] and [25] interesting implementations for
the SCFQ scheduler are proposed. However, these
implementations were designed for a high number
of possible flows. Note that in our case there is
going to be just a limited number of VCs. This
allows to consider more efficient implementations.
Moreover, the case of the SCFQ implementation
[25] was intended for fixed packet sizes, specifically,
for an ATM environment.

Therefore, we have performed our own hardware
implementation for the different schedulers. We
have modeled the schedulers using the Handel-C
language [7] and employed the DK design suite tool
from Celoxica in order to obtain hardware estimates
on silicon area and arbitration time.

The structure of the paper is as follows: Section
II presents a summary of the general aspects about
scheduling algorithms, focusing on the fair queuing
schedulers family. Sections III, IV, and V present
the DRR-CA, SCFQ-CA, and DTable scheduling
algorithms, respectively, and describe their hardware
implementation. In Section VI a comparison study
on the implementation and computational complex-
ity of the different schedulers is provided. Finally,
some conclusions are given.

II. SCHEDULING ALGORITHMS

Service discipline, also called packet scheduling,
is an important mechanism to provide QoS guar-
antees in computer networks, such as end-to-end
delay bounds and fair bandwidth allocation [11],
[14], [37]. During the last decades a vast amount
of scheduling disciplines have been proposed in
the literature for different purposes. This section
outlines some desirable properties of scheduling
disciplines and presents possible ways to classify
scheduling disciplines.

In order to be able to design new scheduling
disciplines and to compare the existing ones with
each other, it is important to define the desirable
properties of a scheduling discipline. It is obvious

that many of these properties are tightly related to
the QoS guarantees made for the end user. However,
there are also some general desirable properties:

1) Good End-to-End Delay. As stated before,
the end-to-end delay (also called latency) is
defined as the sum of the transmission delay,
the propagation delay, and the queuing delay
experienced at each network node. The last
component is by far the most significant. In
some applications if a packet experiences a la-
tency higher than a certain value, the value of
the packet information may be greatly dimin-
ished or even worthless. Moreover, a larger
delay bound implies increased burstiness of
the session at the output of the scheduler,
thus increasing the buffering needed at the
switches to avoid packet losses [31]. Thus, a
good scheduling algorithm should guarantee
acceptable queuing delay.

2) Flexibility . The scheduling discipline should
be able to accommodate applications with
varying traffic characteristics and performance
requirements rather than just optimize the
performance from a certain application’s point
of view [37]. In future networks several ap-
plications with diverse requirements will have
to be supported making necessary for the
scheduling discipline to be flexible.

3) Protection. Real network environment is not
static. As a consequence, the scheduling disci-
pline should be able to protect the well behav-
ing users from different sources of variability,
such as best-effort traffic, bad behaving users
and network load fluctuations [37]. Bad be-
having users refer, for example, to users who
send more packets than their traffic profile al-
lows. Network load fluctuations, on the other
hand, are caused by traffic bursts at a router.
These bursts may accumulate even if the users
meet their traffic constraints at the entrance of
the network. Ideally, the scheduling discipline
should be able to satisfy the performance
requirements of well behaving users even in
the presence of these factors.

4) Simplicity . Performance characteristics are
not the only parameters that must be taken
into account when deciding which is the
best scheduler in networks with QoS support.
Other important property, specially in high-
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performance networks, is simplicity [28]. This
is because in order to achieve a good per-
formance, the processing overheads must be
some orders of magnitude smaller than the
average packet transmission time. This means
that the time needed to decide the next packet
to be transmitted must be very small, if we
consider the high speed of high-performance
networks. Moreover, a low complexity is re-
quired in order to be able to implement the
scheduler in a small silicon area (note that
high-performance switches are usually imple-
mented in a single chip).

Scheduling disciplines can be categorized in
many ways. Traditionally they have been divided
into work-conserving and non-work-conserving dis-
ciplines [37]. Another possible classification is
based on their internal structure, according to two
main architectures: Sorted-priority and frame-based
[29].

A well-known and very important kind of
scheduling algorithms are the fair queuing algo-
rithms. This kind of algorithms allocate bandwidth
to the different flows in proportion to a specified
set of weights. The perfect fair queuing scheduling
algorithm is the General Processor Sharing (GPS)
scheduler [11], [22].

GPS is considered to be an attractive scheduling
discipline since it has many desirable properties.
First, it provides fairness for the flows by servicing
each flow with a rate equal to or greater than the
flows’s guaranteed rate. Second, if the incoming
traffic is leaky-bucket constrained [32], it has been
proved that strict bounds for worst-case network
queuing delay exist [22]. Third, the classes can be
treated in different ways by varying the weights.
For instance, if there are two classes with weights
φ1 = 1 and φ2 = 0, GPS reduces to strict priority
scheduling. On the other hand, if all classes are
assigned equal weights, GPS behaves as a uniform
processor sharing system.

However, despite these advantages, GPS is not a
realistic service discipline since in a packet network
service it is performed packet-by-packet, rather than
“bit-by-bit” and thus, it cannot be implemented in
practice. Different packet-by-packet approximations
of GPS have been proposed, which try to emulate
the GPS system as accurately and simply as pos-
sible while still treating packets as entities. Exam-
ples of fair queueing algorithms are Weighted Fair

Queuing (WFQ) [11], packet-by-packet GPS [22],
Self-Clock Fair Queueing SCFQ [13], Worst Case
Weighted Fair Queuing (WF2Q) [3], frame-based
fair queuing [30], Hierarchical Packet Fair Queuing
[4], Weighted Round Robin (WRR), Deficit Round
Robin (DRR) [27], and List-based WRR [9]. These
scheduling algorithms can be divided in two big
groups: Sorted-priority algorithms and frame-based
algorithms.

A. Sorted-priority fair queuing algorithms

A real-world packet-by-packet GPS service dis-
cipline typically consists of the following two func-
tions:

1) Tracking GPS time: This function tracks
the progress of GPS virtual time (described
later) with respect to the real time. Its main
objective is to estimate the GPS virtual start
and finish times of a packet, which are the
times that a packet should have started and
finished to be served, respectively, if served
by a GPS scheduler.

2) Scheduling according to GPS clock:This
function schedules the packets based on the
estimation of their GPS virtual finish/start
times. For example, WFQ selects the packet
with the lowest GPS virtual finish time among
the packets currently in queue to be served.

The algorithms that follow this approach are
included in the “Sorted-priority” family of algo-
rithms. This kind of scheduling algorithms assign
each packet a tag and scheduling is made based
on the ordering of these tags. “Sorted-priority”
algorithms are known to offer good delay bounds
[31]. However, this family of algorithms suffers
from two major problems. The first problem is that
these algorithms require processing at line speeds
for tag calculation and tag sorting. In other words,
each time a packet arrives at a node, its time tag is
calculated and the packet is inserted at the appro-
priate position in the ordered list of packets waiting
for transmission. This means that these algorithms
require at least the complexity of a search algorithm
in the list of queued packets:O(log(N)), whereN

is the maximum number of packets at the queue,
or if the buffers are not shared,O(log(J)), where
J is the number of active flows. The complexity of
computing the GPS virtual finish time of the packets
has long been believed to beO(J) [22], [30], [31],
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[8]. In [38] and [36] a deeper discussion on this
topic can be found.

The second problem that may happen in the
sorted-priority approach is that the virtual clock
cannot be reinitialized to zero until the system is
completely empty and all the sessions are idle. The
reason is that the time tag is an increasing function
of the time and depends on a common-reference
virtual clock, which in turns reflects the value of
the time tag of previously served packets. In other
words, it is impossible to reinitialize the virtual
clock during the busy period, which, although sta-
tistically finite (if the traffic is constrained), can
be extremely long, especially given that most com-
munication traffic has been shown to exhibit self-
similar patterns which lead to heavily tailed buffer
occupancy distributions.

Therefore, for a practical implementation of
sorted-priority algorithms, very high-speed hard-
ware needs to be designed to perform the sorting,
and floating-point units must be involved in the
computation of the time tags.

B. Frame-based fair queuing algorithms

Frame-based fair queuing algorithms try to ad-
dress the excesive complexity of sorted-priority
algorithms. The simplest frame-based scheduling
discipline that provides a way to emulate the GPS
system is the Weighted Round Robin (WRR). In
the WRR approach, a list of flow weights is visited
sequentially, each weight indicating the number of
packets from the flow that can be transmitted. The
WRR algorithm faces a problem if the average
packet size of the different flows is different. In
that case, the bandwidth that the flows obtain may
not be proportional to the assigned weights. There-
fore, the WRR algorithm does not work properly
with variable packet sizes. However, today network
technologies usually use variable packet sizes.

The Deficit Round Robin (DRR) algorithm [27]
is a variation of the WRR algorithm that works on
a proper way with variable packet sizes. In order
to handle properly variable packet sizes, the DRR
algorithm associates each queue with aquantumand
a deficit counter. The quantum assigned to a flow
is proportional to the bandwidth assigned to that
flow. The sum of all the quantums is called the
frame length. For each flow, the scheduler transmits
as many packets as the quantum allows. When a

packet is transmitted, the quantum is reduced by
the packet size. The unused quantum is saved in the
deficit counter, representing the amount of quantum
that the scheduler owes the flow. At the next round,
the scheduler will add the previously saved quantum
to the current quantum. The main advantage of the
DRR scheduler is its computational simplicity. Due
to this, recent research in the Differentiated Services
area proposes the DRR as a feasible solution for
implementing the Expedited Forwarding Per-hop
Behavior [12]. However, the main problem of this
algorithm is that its delay depends on the frame
length. Depending on the situation, the frame can
be very long, and thus, the latency could be very
bad.

Two recent network technology standards, AS
and IBA, incorporate table-based schedulers, which
are intended to provide a good latency performance
with a small computational complexity. In order to
provide a good latency performance, the table-based
schedulers instead of serving packets of a flow in
a single visit per frame, the service is distributed
throughout the entire frame. AS and IBA use Virtual
Channels (VCs) to aggregate flows with similar
characteristics and the arbitration is made at a VC
level. In both cases, the maximum number of unicast
VCs that a port can implement is 16. The AS table-
based scheduler employs an arbitration table that
consists in a register array with fixed-size entries of
8 bits. Each entry contains a field of 5 bits with a VC
identifier value and a reserved field of 3 bits. When
arbitration is needed, the table is cycled through
sequentially and a packet is transmitted from the
VC indicated in the current table entry regardless
of the packet size. If the current entry points to an
empty VC, that entry is skipped. The number of
entries may be 32, 64, 128, 256, 512, or 1024.

InfiniBand defines a scheduler that uses two ta-
bles, one for scheduling packets from high-priority
VCs and another one for low-priority VCs. The
maximum amount of data that can be transmitted
from high-priority VCs before transmitting a packet
from the low-priority VCs can be configured. Each
table has up to 64 entries. Each entry contains a
VC identifier and a weight, which is the number of
units of 64 bytes to be transmitted from that VC.
This weight must be in the range of 0 to 255, and
is always rounded up as a whole packet.

On the other hand, Chaskar and Madhow [9]
propose a category of scheduler called list-based
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Weighted Round Robin for being used in networks
with fixed packet sizes. Chaskar and Madhow pro-
pose three of these list-based WRR schedulers. All
of these schedulers can actually be implemented
with the AS table-based scheduler. In all the cases
the proportion of table entries associated with each
flow indicates the bandwidth assigned to each flow.
Therefore, the difference among the three schedulers
is in the way of distributing the flow identifiers
among the table entries. These different forms of
interleaving the flow identifiers result in different
latency characteristics for the three schedulers. In
their tests, the variant that provides the best latency
performance tries to emulate the behavior of the
WF2Q algorithm.

III. T HE DRR-CA SCHEDULER

The DRR algorithm [27] is a variation of the
WRR algorithm that works on a proper way with
variable packet sizes. In order to handle properly
variable packet sizes, the DRR algorithm associates
each queue with aquantumand adeficit counter.
The quantum assigned to a queue is proportional to
the bandwidth assigned to that queue. The deficit
counter is set to 0 at the beginning. The scheduler
visits sequentially each queue and transmits as many
packets as the quantum allows. When a packet is
transmitted, the quantum is reduced by the packet
size. The unused quantum is saved in the deficit
counter, representing the amount of quantum that
the scheduler owes the queue. At the next round, the
scheduler will add the previously saved quantum to
the current quantum. When the queue has no packets
to transmit, the quantum is discarded, since the
flow has wasted its opportunity to transmit packets.
Figure 1 shows the pseudocode for this algorithm.

The problem of the DRR scheduler, which is
common in current high-peformance networks, is
that it interacts with the link-level flow control
mechanism. When we do not allow the selection
of a flow, because of lack of flow control credits,
if we still continue accumulating quantum for this
flow in each round, then the blocked flow is going to
take advantage of the time that has been blocked. In
order to solve this problem, the DRR-CA algorithm
that we have proposed works in the same way as the
DRR algorithm, except in the following aspects:

• We are going to consider VCs instead of flows
in the DRR-CA algorithm because, as stated

before, is the common trend in the last inter-
connection network proposals.

• A VC queue is considered active only if it has
at least one packet to transmit and if there are
enough credits to transmit the packet at the
head of the VC.

• When a packet is transmitted, the next active
VC is selected when any of the following
conditions occurs:

– There are no more packets from the cur-
rent VC or there are not enough flow
control credits for transmitting the packet
that is at the head of the VC. In any of
these two cases, the current VC becomes
inactive, and its deficit counter becomes
zero.

– The remaining quantum is less than the
size of the packet at the head of the
current VC. In this case, its deficit counter
becomes equal to the accumulated weight
in that instant.

The resulting algorithm is expressed in the pseu-
docode shown in Figure 2.

If we compare the complexity of the DRR and
DRR-CA algorithms, the main difference is that in
the case of the DRR-CA algorithm the number of
queues is equal to the number of VCs instead of the
number of flows, and thus the complexity is even
smaller. The only added complexity is to take into
account the flow control status in order to consider
active or inactive a VC.

A well-known problem of the WRR and DRR
algorithms, that is also shared by the DRR-CA
algorithm, is that the latency and fairness depend
on the frame length. The frame length in these
algorithms is defined as the sum of all the weights
in the WRR algorithm or the quantums in the DRR
algorithm. The longer the frame is, the higher the
latency and the worse the fairness. In order for
DRR to exhibit lower latency and better fairness,
the frame length should therefore be kept as small
as possible. Unfortunately, given a set of flows, it
is not possible to select the frame length arbitrarily.
According to the implementation proposed in [27],
DRR exhibitsO(1) complexity provided that each
flow is allocated a quantum no smaller than the
Maximum Transfer Unit (MTU). This ensures that
the algorithm can cycle through the list knowing that
it is always possible to transmit at least one packet
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while (There is at least one packet to be transmitted)
if ((There are no packets in the queue ofselectedF low) or

(selectedF lowsizeF irst > totalQuantum))
deficitCounterselectedF low ← totalQuantum

selectedF low ← Next active flow
totalQuantum← deficitCounterselectedF low + quantumselectedF low

totalQuantum = totalQuantum− selectedF lowsizeF irst

Transmit packet from selectedFlow
if (There are no more packets in the queue ofselectedF low)

totalQuantum← 0

Fig. 1. Pseudocode of the DRR scheduler.

while (There is at least one active VC)
if ((selectedV C is not active) or (selectedV CsizeF irst > totalQuantum))

selectedV CdeficitCounter ← totalQuantum

selectedV C ← Next active VC
totalQuantum← selectedV CdeficitCounter + selectedV Cquantum

totalQuantum = totalQuantum− selectedV CsizeF irst

Transmit packet from selectedVC
if ((There are no packets in the queue ofselectedV C) or

(The flow control does not allow transmitting fromselectedV C))
totalQuantum← 0

Fig. 2. Pseudocode of the DRR-CA scheduler.

from each flow. This means that there will never
be a need to cycle through the entire table several
times in order to gather enough weight for the
transmission of a single packet. As observed in [16],
removing this hypothesis would entail operating
at a complexity which can be as large asO(N).
Note that this restriction affects not only the weight
assigned to the smallest flow, but to the rest of the
flows in order to keep the proportions among them.

A. Hardware implementation of the DRR-CA sched-
uler

When a packet arrives at the head of a VC
queue the scheduler receives a notification from
the buffers. The DRR-CA scheduler just takes note
of the packet size and actives the VC if there are
enough flow control credits to transmit that packet.
In order to select the next VC that can transmit
packets, the scheduler must select the next active
VC from the last selected VC in a list with all the
VCs. The scheduler transmits packets from the same

VC until that VC becomes inactive or there is no
enough quantum to transmit more packets from that
VC.

A possible way of implementing the mechanism
that selects the next active VC would be to check
sequentially all the VCs in the list starting from
the contiguous position of the last selected VC (see
Figure 3). However, in order to make this search
in an efficient way, we have implemented it with a
barrel shifter connected to anorder based bitonic
network. The barrel shifter rearranges the list in
the correct order of search and the bitonic network
finds the first active VC in a logarithmic number
of cycles. The structure for this selector function is
also shown in Figure 3.

IV. T HE SCFQ-CASCHEDULER

The Self-Clocked Weighted Fair Queuing (SCFQ)
algorithm [13] is a variant of the Weighted Fair
Queuing (WFQ) mechanism [11] which has a lower
computational complexity. It defines fair queueing
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Fig. 3. Structure of the module that selects the next VC to transmit in the DRR-CA scheduler.

in a self-contained manner and avoids using a hypo-
thetical queueing system as reference to determine
the fair order of services like in the WFQ. This
objective is accomplished by adopting a different
notion of the virtual time. Instead of linking the
virtual time to the work progress in the GPS system,
the SCFQ algorithm uses a virtual time function
which depends on the progress of the work in the
actual packet-based queuing system. This approach
offers the advantage of removing the computation
complexity associated to the evaluation of the virtual
time that may make WFQ unfeasible in high-speed
interconnection technologies.

Therefore, when a packet arrives, SCFQ uses the
service tag of the packet currently in service as the
virtual time to calculate the new packet tag. Thus,
in this case the service tag of thekth packet of the
ith flow Sk

i , let Lk
i be its length andφi the weight

assigned to its flow, is computed as

Sk
i = max{Sk−1

i , Scurrent}+
Lk

i

φi

As stated before, the SCFQ algorithm avoids the
emulation of a GPS system to maintain thevirtual
time. This reduces the computational complexity of

the tag calculation. Therefore, the computational
complexity of the SCFQ algorithm is lower than
the complexity of the WFQ algorithm. However, the
computational simplification does not come without
a cost: In some situations SCFQ behaves worse than
WFQ and WF2Q. Figure 4 shows the pseudocode
for the SCFQ algorithm.

The SCFQ-CA scheduler we have proposed
adapts the original SCFQ algorithm to be used with
a link-level flow control mechanism with a limited
number of flows or VCs. Note that,Scurrent is the
service tag of the packet currently being transmitted
and thus, the service tag of the packets that have
already been transmitted is equal to or lower than
Scurrent. Moreover, the service tag of the packets
that have not already been transmitted are equal to
or bigger thanScurrent. Therefore, if thekth packet
of the ith VC arrives at an empty queue, the service
tag is computed as:

Sk
i = Scurrent +

Lk
i

φi

On the other hand, if thekth packet of the VCi

arrives at a queue with more packets, the service
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PACKET ARRIVAL (newPacket, flow):
newPacketserviceTag ← max(currentServiceTag, flowlastServiceTag) + newPacketsize

flowreservedBandwidth

flowlastServiceTag ← newPacketserviceTag

ARBITRATION:
while (There is at least one packet to transmit)

selectedPacket← Packet with the minimumserviceTag

currentServiceTag ← selectedPacketserviceTag

TransmitselectedPacket

if (There are no more packets to transmit)
∀flow flowlastServiceTag ← 0
currentServiceTag ← 0

Fig. 4. Pseudocode of the SCFQ scheduler.

tag is computed as:

Sk
i = Sk−1

i +
Lk

i

φi

This means that once that there is at least one
packet in a VC queue, the value of the service
tags of the packets that arrive after this first packet
depends only on the value of the precedent service
tags and not on the value ofScurrent at the arrival
time. Therefore, we can wait to stamp a packetpk

i

with its service time until the packet that is before
it in the VC queue,pk−1

i , is being transmitted. Note
that at this time theScurrent is equal toSk−1

i .
This allows us to simplify in a high degree the

original SCFQ algorithm by storing not a service tag
per packet, but a service tag per flow or VC. This
service tag represents the service tag of the packet
of the VC queue. Note that this makes much easier
and simpler to modify this algorithm to take into
account a link-level flow control mechanism. Each
VC service tag is then computed as:

Si = Scurrent +
L

first
i

φi

whereL
first
i is the size of the packet at the head of

the ith VC.
The SCFQ-CA algorithm that we propose works

in the same way as the SCFQ algorithm, except in
the following aspects:

• We are going to consider VCs instead of flows
in the SCFQ-CA algorithm because, as stated
before, is the common trend in the last inter-
connection network proposals.

• Each active VC has associated a service tag.
• When a new packet arrives at a VC queue, a

service tag is assigned only if the arrived packet
is at the head of the VC and there are enough
credits to transmit it.

• When a packet is transmitted, if there are
enough credits to transmit the next packet, the
VC service tag is recalculated.

• When a VC is inactive due to a lack of credits
and receives enough credits to transmit again,
a new service tag is assigned to the VC.

The resulting scheduling algorithm is represented in
the pseudocode shown in Figure 5.

A. Symplifying the SCFQ-CA scheduler

The SCFQ-CA algorithm, as the original SCFQ
algorithm and most shorted-priority algorithms, has
the problem of the increasing tag values and the
possible overflow of the registers used to store these
values. Therefore, we propose a modification to
the SCFQ-CA scheduler that makes impossible this
overflow. This modification consists in subtracting
the service tag of the packet currently being trans-
mitted to the rest of service tags. If we consider only
a tag per VC, this means to subtract the service tag
of the VC to which the packet being transmitted
belongs to the rest of VCs service tags.

This limits the maximum value of the service
tags while still maintaining the absolute differences
among their values. This also means thatScurrent is
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PACKET ARRIVAL(newPacket, VC):
if (newPacket is at the head in the queue ofV C) and

(The flow control allows transmitting fromV C))
V CserviceTag ← currentServiceTag + V CsizeFirst

V CreservedBandwidth

ARBITRATION:
while (There is at least one active VC)

selectedV C ← Active VC with the minimumserviceTag

currentServiceTag ← selectedV CserviceTag

Transmit a packet fromselectedV C

if ((There are more packets in the queue ofselectedV C) and
(The flow control allows transmitting fromselectedV C))
selectedV CserviceTag ← currentServiceTag + selectedV CsizeFirst

selectedV CreservedBandwidth

else
selectedV CserviceTag ← 0
if (There are no active VCs)

currentServiceTag ← 0

Fig. 5. Pseudocode of the SCFQ-CA scheduler.

always equal to zero and thus,

Si =
L

first
i

φi

Moreover, the service tags are limited to a maximum
value maxS: maxS = MTU

minφ
where MTU is the

maximum packet size andminφ is the minimum
possible weight that can be assigned to a VC.
The resulting SCFQ-CA scheduling algorithm is
represented in the pseudocode shown in Figure 6.
Note that this last modification adds the complexity
of subtracting to all the service tags a certain value
each time a packet is scheduled. This makes this
modification feasible in hardware only when a few
number of VCs is considered, which is the common
trend in the last interconnection network proposals.

B. Hardware implementation of the SCFQ-CA
scheduler

When a new packet arrives at the SCFQ-CA
scheduler, apart from taking note of the packet
size and activating the VC if there are enough
flow control credits to transmit that packet, this
scheduler must calculate the packet service tag. As
stated before, we have solved the problem of the
possible overflow of the service tags. Moreover, this
modification entails a simplification of the service
tag computation.

In order to decide which is the next packet to be
transmitted, the SCFQ-CA algorithm must choose
the packet from the active VC with the smallest
service tag. In order to do this in an efficient way,
we have employed a bitonic network, which obtains
the selected VC in log(#VCs) cycles. The structure
of the selector module is shown in Figure 7.

V. THE DEFICIT TABLE SCHEDULER

We have proposed a new table-based scheduling
algorithm that works properly with variable packet
sizes [17]. We have called this algorithm Deficit
Table scheduler, or just DTable scheduler, since it is
a mix between the previously proposed table-based
schedulers and the DRR algorithm. Our scheduler
works in a similar way than the DRR algorithm but
instead of serving packets of a flow in a single visit
per frame, the quantum associated to each flow is
distributed throughout the entire frame. Note that
we have also considered the possibility of a link-
level flow control mechanism when defining this
scheduler.

This new table-based scheduler defines an arbitra-
tion table in which each table entry has associated a
flow identifier and anentry weight, which is usually
expressed in flow control credits in networks with
a credit-based link-level flow control (like AS and
IBA). Moreover, each flow has assigned adeficit
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PACKET ARRIVAL(newPacket, VC):
if (newPacket is at the head in the queue ofV C) and

(The flow control does allow transmitting fromV C))
V CserviceTag ←

V CsizeFirst

V CreservedBandwidth

ARBITRATION:
while (There is at least one active VC)

selectedV C ← Active VC with the minimumserviceTag

currentServiceTag ← selectedV CserviceTag

Transmit packet fromselectedV C

∀ activeV C

V CserviceTag ← V CserviceTag − currentServiceTag

if ((There are more packets in the queue ofselectedV C) and
(The flow control does allow transmitting fromselectedV C))
selectedV CserviceTag ←

selectedV CsizeFirst

selectedV CreservedBandwidth

Fig. 6. Pseudocode of the improved SCFQ-CA scheduler.

Fig. 7. Structure of the selector module for the SCFQ-CA scheduler.

Fig. 8. Example of an arbitration table with 32 entries for the DTable
scheduler.

counter that is set to 0 at the beginning. Figure 8
shows an example of an arbitration table with 32
entries.

When scheduling is needed, the table is cycled

through sequentially until an entry assigned to an
active flow is found. A flow is considered active
when it stores at least one packet and the flow
control allows that flow to transmit packets. When
a table entry is selected, theaccumulated weight
is computed. The accumulated weight is equal to
the sum of the deficit counter for the selected
flow and the current entry weight. The scheduler
transmits as many packets from the active flow as
the accumulated weight allows. When a packet is
transmitted, the accumulated weight is reduced by
the packet size.

The next active table entry is selected if the
flow becomes inactive or the accumulated weight
becomes smaller than the size of the packet at the
head of the queue. In the first case, the remaining
accumulated weight is discarded and the deficit
counter is set to zero. In the second case, the unused
accumulated weight is saved in the deficit counter,



12

representing the weight that the scheduler owes the
queue.

This behavior, already considering VCs instead
of flows, is represented in the pseudocode shown
in Figure 9. Note that when using the scheduling
algorithm the bandwidth assigned to theith flow φi

with an arbitration table ofN entries is:

φi =

J∑

j=0

weightj

N∑

n=0

weightn

whereJ is the set of table entries assigned to the
ith flow andweight is the entry weight assigned to
a table entry.

In order to keep the computational complexity
low, we set the minimum value that a table entry
can have associated to the MTU of the network.
This is the smallest value that ensures that there will
never be necessary to cycle through the entire table
several times in order to gather enough weight for
the transmission of a single packet. This means that
each time an entry from an active flow is selected,
at least one packet is going to be transmitted from
that flow. Note that this consideration is also made
in the DRR algorithm definition [27]. Note also that
in the IBA table-based scheduler this issue is solved
by rounding up to a whole packet the remaining
weight in a table entry.

A. Converting the AS and IBA table schedulers to
a DTable scheduler

As stated before, AS and IBA employ table-based
schedulers in the egress links to provide QoS. In
this section, we show how to implement the DTable
scheduler in these technologies modifying as little
as possible their specifications.

1) InfiniBand: Each table entry of the IBA
scheduling mechanism specifies a VC identifier and
a weight. Therefore, the difference between the IBA
table and the DTable arises when the size of the
packet at the head of the selected VC is bigger than
the remaining amount of information to transmit
from that VC. In the InfiniBand case, the packet
is transmitted exhausting the remaining weight, but
in the DTable case, other table entry is selected, and
the remaining weight is stored for future use in the
VC deficit counter.

Therefore, in order to implement the DTable
scheduler in IBA, it is only necessary to add the
deficit mechanism. This means to add a deficit
counter to each VC and the logic to store and load
the remaining weight. Note that these counters are
set to zero at the beginning and are modified dynam-
ically by the scheduler itself during the scheduling
process, and thus they do not require any user
configuration.

2) Advanced Switching:As stated before, the AS
arbitration table consists in a list of VC identifiers
without any weight assigned to each entry as it is the
case in the DTable scheduler. Therefore, apart from
adding the hardware to manage a deficit counter
per VC, we must indicate in some way the weight
assigned to each table entry.

The simplest way of implementing the DTable
scheduler would be to assign all the table entries the
same fixed weight. However, this approach limits
a lot the configuration posibilities of the DTable
scheduler. Therefore, we have proposed three other
possibilities to fully implement the DTable sched-
uler in AS but modifying as little as possible the
AS specification [19]:

a) Using the 3-bit reserved field:This possi-
bility consists in employing the 3-bit reserved field
of each table entry to assign a weight to each entry.
The problem of this implementation is that this field
only allows us to specify a weight between 0 and
7, and thus, several considerations must be made.
First of all, as stated before, the entry weight must
represent at least the value of the MTU. Therefore,
a weight of 0 is not going to be used, and thus, we
propose to consider the weight 0 as 1, the weight 1
as 2, etc. This allows us to specify a weight between
1 and 8 with the 3-bit field.

Moreover, in AS, the MTU can be up to 34 flow
control credits (2176 bytes). Obviously, it is not
possible to represent directly a value of at least
34 with just 3 bits. Therefore, when using the 3-
bit reserved field to assign a weight to each entry,
each weight unit will represent a weight equivalent
to a certain number of flow control creditsm.
Therefore, when an entry is selected its weight must
be translated into its value in flow control credits:

tableEntry.weight← (tableEntry.value+1)×m

b) Modifying the arbitration table format:
Other possibility is to modify the structure of the
arbitration table in order to dedicate a higher num-
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while (There is at least one active VC)
if ((selectedV C is not active) or (selectedV CsizeF irst > accumulatedWeight))

selectedV CdeficitCounter ← accumulatedWeight

tableEntry ← Next table entry assigned to an active VC
selectedV C ← tableEntryV CIdentifier

accumulatedWeight← selectedV CdeficitCounter + tableEntryweight

accumulatedWeight = accumulatedWeight− selectedV CsizeF irst

Transmit packet fromselectedV C

if ((There are no packets in the queue ofselectedV C) or
(The flow control does not allow transmitting fromselectedV C))
accumulatedWeight← 0

Fig. 9. Pseudocode of the DTable scheduler.

ber of bits to the entry weight. Specifically, we
propose to use two bytes per table entry, and use
5 bits for the VC identifier and up to 11 for the
entry weight. This number of bits is high enough to
directly employ it for storing the entry weight:

tableEntry.weight← tableEntry.value

c) Using only one weight per VC:The third
possibility that we propose is to associate the same
weight to all the entries assigned to a VC. Therefore,
we only need to specify a table weight per VC
instead of per table entry. This requires, however, an
additional structure to configure a weight per VC.
When a new table entry is selected, the accumulated
weight is computed as:

tableEntry.weight← weightselectedV C

B. Hardware implementation of the DTable sched-
uler

When a new packet is notified to the DTable
scheduler, it just takes note of the packet size and
actives the VC if there are enough flow control
packets to transmit that packet (it makes the same as
the DRR-CA scheduler). As in the DRR-CA case,
this scheduler transmits from the same selected VC
until the VC becomes inactive or the remaining
weight entry is not enough to transmit the packet
at the head of the VC queue. In order to select a
new VC to transmit from, the arbitration table must
be looked over sequentially searching for the next
active entry and skipping those entries that refer to a
VC without packets or credits to transmit. Although
the checking of each entry can be made with very

simple computational units, in the worst case all the
table must be looked over in order to find the next
active entry.

In order to make the process faster, several entries
of the table can be read simultaneously at the ex-
pense of increasing the silicon area and probably the
cycle time. This algorithm also requires the memory
necessary to store the arbitration table. However,
this algorithm has not the problem of the increasing
tag value and does not need mathematical division
units to calculate any packet tag of sorted priority
algorithms.

The arbitration table can be stored in specialized
memory blocks, like the SRAM block that can be
found in most FPGAs models, or in an array of
registers. A possible way to read several entries
simultaneously in an efficient way is to split the
register array or memory block in several subblocks
and read one entry of each of these subblocks in
the same cycle. We have called the number of
simultaneous table entries read in a single cycle the
parallelization grade.

Figure 10 shows the structure of the mechanism
that we have implemented to obtain the next active
table entry. First of all we read a certain number of
consecutive table entries from the last selected table
entry equal to the parallelization grade. The next
cycle, we check if any of those entries refers to an
active VC. At the same time, the next ‘paralleliza-
tion grade’ entries are read. When the mechanism
realizes that at least one entry is active in the set of
table entries, the process stops and a bitonic network
is employed to calculate which is the first active
entry in the subblock.



14

Fig. 10. Structure of the selector module for the parallel table scheduler.

TABLE I

ARBITRATION TIME IN CYCLES FOR SEQUENTIAL AND PARALLEL IMPLEMENTATIONS OF THEDTABLE SCHEDULER.

Scheduler Number of cycles
Table (Sequential search) [1→ #Entries] + 2

Table (Parallel search) [1→
#Entries

Parallel Grade
] + log2(Parallel Grade) + 3

Table I shows the number of cycles required to
make the arbitration decision in both cases, when
the table is cycle through sequentially or, when
various entries are processed at the same time.
Note that in the DTable scheduler case, the number
of cycles required to complete the arbitration is
variable and depends on how far from the last
selected entry is the next selected entry. When the
load of the network is low, more cycles will be
probably required in average to find the next table
entry. When the load of the network is high, most
VCs will be active anytime, and thus the average
number of cycles will be very small.

VI. H ARDWARE ESTIMATES

In this section we analyze the implementation and
computational complexity of the DRR-CA, SCFQ-
CA and DTable schedulers. We have modeled these

schedulers using Handel-C language [7] and em-
ployed the DK design suite tool from Celoxica in
order to obtain hardware estimates on silicon area
and arbitration time. Note that the code that we
have designed can actually be used to implement
the DRR-CA and SCFQ-CA schedulers in a Field
Programmable Gate Array (FPGA) or, if the appro-
priate conversion is made, in an Application Specific
Integrated Circuit (ASIC). However, this has not
been the objective of our work. Therefore, we have
tried to implement the schedulers in an efficient way,
but they could have been probably implemented
more efficiently. Our objective has neither been to
obtain explicit values for the silicon area nor for
the arbitration time of each scheduler. In fact, these
values are very dependent on the specific FPGA or
the implementation technology employed. We are
more interested in the relative differences on silicon
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area and arbitration time for the different schedulers
and the effect of some design parameters like the
number of VCs or the MTU.

A. Handel-C and the DK design suite

As stated before, we have employed the Handel-
C language to model and obtain hardware estimates
for the different schedulers that we have considered.
Handel-C is essentially an extended subset of the
standard ANSI-C language, specifically extended
for being used in hardware design (see Figure 11).

Fig. 11. ANSI-C / Handel-C comparison.

Handel-C’s level of design abstraction is above
Register Transfer Level (RTL) languages, like
VHDL [2] and Verilog [21], but below behavioral.
In Handel-C each assignment infers a register and
takes one clock cycle to complete, so it is not a
behavioral language in terms of timing. The source
code completely describes the execution sequence
and the most complex expression determines the
clock period.

A comparison of Handel-C with RTL languages
shows that the aims of these languages are quite
different. RTL languages are designed for hardware
engineers who want to create sophisticated circuits.
They provide all constructs necessary to craft com-
plex, tailor made hardware designs. By choosing the
right elements and language constructs in the right
order, the specialist can specify every single gate
or flip-flop built and manipulate the propagation
delays of signals throughout the system. On the
other hand, RTL languages expect that the developer
knows about low-level hardware and requires him
continuously thinking about the gate-level effects of
every single code sequence.

In contrast to that, Handel-C is not designed to
be a hardware description language, but a high-
level programming language with hardware output.

It does not provide highly specialized hardware
features and allows only the design of digital syn-
chronous circuits. Instead of trying to cover all
potentially possible design particularities, its focus
is on fast prototyping and optimizing at the algorith-
mic level. The low-level problems are hidden com-
pletely, all the gate-level decisions and optimization
are done by the compiler so that the programmer can
focus his mind on the task he wants to implement.
As a consequence, hardware design using Handel-C
resembles more to programming than to hardware
engineering.

Handel-C closely corresponds with a typical soft-
ware flow and provides the essential extensions
required to describe hardware. These extensions
include flexible data widths, parallel processing and
communications between parallel threads. Sequen-
tial by default, Handel-C has apar construct. When
a block of code is qualified bypar, statements are
executed concurrently and synchronized at the block
end. This simple construct allows for the expression
of mixed sequential and parallel flows in compact
and readable code.

The Handel-C compiler comes packaged with the
Celoxica DK design suite. The DK design suite
supports several output targets:

• Debugger: The debugger provides in-depth fea-
tures normally found only in software develop-
ment. These features include breakpoints, sin-
gle stepping, variable watches, and the ability
to follow parallel threads of execution. The
hardware designer can step through the design
just like a software design system using this
approach.

• EDIF: The second output target is the synthesis
of a netlist for input to place and route tools.
Place and route is the process of translating
a netlist into a hardware layout. This out-
put allows the design to be translated into
configuration data for particular chips. When
compiling the design for a hardware target,
Handel-C emits the design in Electronic Design
Interchange Format (EDIF).

• RTL (VHDL and Verilog): The RTL output
preserves the hierarchy of the Handel-C source
code allowing experienced engineers to ver-
ify at the RTL level. The compiler generates
RTL with appropriate syntax and attributes
for leading third party synthesis tools, timing
simulators and ASIC design flows.
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In order to obtain the hardware estimates in which
we are interested:

1) We have modeled in Handel-C a full egress
queuing system, including the scheduler.

2) We have validated the schedulers employing
the simulation and debugging functionality of
the DK design suite.

3) We have isolated the scheduler module in
order to obtain estimates without influence of
other modules.

4) We have obtained the EDIF output for a Virtex
4 FPGA from Xilinx [35].

A cycle count is available from the Handel-C source
code: Each statement in the Handel-C source code is
executed in a single cycle in the resulting hardware
design and thus, the number of cycles required to
perform a given function can be deduced directly
from the source code. Moreover, an estimate of
gate count and cycle time is generated by the
EDIF Handel-C compiler. The cycle time estimate
is totally dependent on the specific target FPGA, in
this case the Virtex 4 [35], which is one of the last
FPGA models provided by Xilinx [34]. However,
as our objective is to obtain relative values instead
of absolute ones, we consider that this approach is
good enough to be able to compare the complexity
in terms of silicon area and scheduling time of the
different schedulers. Figure 12 reflects the design
flow that we have followed.

Fig. 12. Design flow with DK employing Handel-C.

B. Modelling the egress queuing system

As stated before, in order to model the differ-
ent schedulers, we have previously modeled a full

egress link queuing system that could be part of an
endnode or switch. We have done this in order to be
able to test the rightness of our implementation. Fig-
ure 13 shows the different modules that compound
the egress queuing system and their interactions.
These modules are:

• Traffic generator: We need a traffic load in
order to test the schedulers. We have developed
a Constant Bit Rate (CBR) traffic generator in
order to feed the VCs. We can assign each VC
with a different traffic generator configured to
produce packets at a different rate and with
different packet size.

• Buffers: The buffers module is the responsible
of managing the packets stored in each VC
queue. It tracks the available space in each
queue, notifies the scheduler the arrival of new
packets, and frees space in the queues when
packets are transmitted.

• Transmitter: The transmitter module injects
into the egress link the packets that the sched-
uler indicates and deletes the information of
those packets in the buffers.

• Scheduler: The scheduler module is the most
important part to our objective. Its main func-
tion is to decide the next packet to be trans-
mitted from an active VC. In order to do so, it
keeps track of the set of active VCs by monitor-
ing the packet at the head of each queue and
the available number of flow control credits.
Moreover, it consumes the flow control credits
required by each transmitted packet. When a
scheduling decision has finished it notifies that
fact to the transmitter.

• Flow controller: The flow controller tracks the
number of available flow control credits of each
VC.

• Credit generator: Only one egress queuing
system has been modeled, and thus in order to
keep the system transmitting packets we need
to renew the consumed flow control credits
with a flow control credit generator module.

An advantage of using Handel-C to model the
egress queuing system and the schedulers is that
it allows parameterizing the design in an easy
way. Through the use of constants and compiler
commands we can generate outputs (for simulation,
EDIF, or RTL targets) with, for example, variable
number of VCs and packet MTU considered. In
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Fig. 13. Egress link queuing system modules.

order to simplify the design, we have considered
power of two values for the number of VCs and
MTU. Moreover, we have considered packets to be
of an integer number of flow control credits.

C. Hardware estimates for the DRR-CA and SCFQ-
CA schedulers

Note that, in order to calculate the packet service
tag a division operation is required, which is not a
simple arithmetical unit. Handel-C offers a divisor
operand that calculates the result in one cycle (as
all the Handel-C statements). This operand makes
the division very short in terms of number of cycles
but, it makes the cycle time very long, and thus
it makes the arbitration time quite long. Therefore,
we have also implemented a version of the SCFQ-
CA scheduler that employs a mathematical division
unit that performs the division in several cycles.
Specifically, it takes a number of cycles equal to the
length of the operators plus one. This second version
reduces the cycle time and thus, the arbitration time.
However, the division requires much more cycles
to be performed. It even requires more time to be
performed because the cycle time is not reduced
in the same proportion as the number of cycles is
increased. We have called the SCFQ-CA version
that performs the division in one cycle ‘atomic
SCFQ-CA’. On the other hand, we have called the
SCFQ-CA version that performs the division in
several cycles ‘segmented SCFQ-CA’.

The advantage of the atomic SCFQ-CA is that
it calculates the time tag in only one cycle, and
thus it takes for processing a new packet, the same
time than the DRR-CA scheduler, and as we will
see, also than the table scheduler. This makes very
easy to compare both schedulers, because it is only
necessary to confront the silicon area and arbitration
time. However, in the segmented SCFQ-CA case
processing a new packet takes much more time, and
without a full model of a switch the effect over
the overall performance of this longer time is not
easy to be measured. We include this option in this
study because it is a possibility that must be taken
into account, but the comparison with the rest of
schedulers is not so clear like in the atomic SCFQ-
CA case.

As stated before, once that the schedulers have
been validated through simulation with the debugger
functionality of the DK design suite, we have iso-
lated the scheduler module in order to compile it for
the EDIF output. In this way the hardware estimates
obtained, like the cycle time, are not going to be
influenced by the rest of modules. Table II shows
the number of cycles required by the DRR-CA
and SCFQ-CA schedulers to perform the arbitration.
Therefore, the arbitration time depends on the cycle
time and on the number of VCs (VCN in the table).

Figure 14 shows how the increment in the number
of VCs and the MTU affects the silicon area and
the arbitration time of the DRR-CA and SCFQ-CA
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TABLE II

ARBITRATION TIME IN CYCLES FOR THEDRR-CA AND SCFQ-CASCHEDULERS.

Scheduler Number of cycles
DRR-CA log2(V C N) + 3

Atomic SCFQ-CA log2(V C N) + 2
Segmented SCFQ-CA log2(V C N) + 2

schedulers (atomic and segmented). Specifically, it
shows the increment in these complexity indices
respect the simplest case for each scheduler (2 VCs
and a MTU of 2). When varying the number of VCs,
we have used a MTU of 32 and when varying the
MTU we have considered 8 VCs.

Regarding the effect of the number of VCs,
Figure 14 shows that this number influences dramat-
ically the silicon area and arbitration time required
by the DRR-CA and SCFQ-CA schedulers. Note
that in the case of the arbitration time, the increment
is due to both, the increase in the cycle time and
the increase in the number of cycles required to
compute the arbitration. Note that the X axis is in
logarithmic scale, thus a linear growth in data plot
actually means a logarithmic data growth, and an
exponential growth in data plot actually means a
linear data growth.

On the other hand, regarding the effect of the
MTU, Figure 14 shows that the increase in silicon
area and time when increasing the MTU is not
so important if compared with the effect of the
number of VCs. The atomic variant of the SCFQ-
CA scheduler is the most affected by this parameter.
Increasing the MTU from 2 to 64 increases the
silicon area required by this scheduler 70% and
the arbitration time 37%. The reason of this is
that the value of the MTU affects the size of the
division operation required to calculate the SCFQ-
CA service tag and thus, it affects in a higher degree
the atomic version of the SCFQ, which requires a
lot of silicon area and increases in a high degree
the cycle time in order to perform the division in a
single cycle.

Figure 15 shows the same results than Figure 14
except that in this case, the increment is relative to
the silicon area and arbitration time required by the
DRR-CA scheduler with 2 VCs (when varying the
number of VCs) and a MTU of 2 (when varying the
MTU). This allows us to compare the silicon area
and the arbitration time required by the different

schedulers for different design parameters.
Figure 15 shows, as expected, that the DRR-CA

scheduler is the simplest scheduler in terms of sili-
con area and arbitration time. On the other hand, the
atomic version of the SCFQ-CA scheduler requires
much more silicon area and arbitration time than the
DRR-CA or the segmented SCFQ-CA schedulers.
Figure 15 also shows that the segmented SCFQ-CA
scheduler requires also much more silicon area than
the DRR-CA scheduler. However, the difference in
arbitration time is not so big. Finally, this figure
shows that the difference among the atomic SCFQ-
CA scheduler and the other two scheduler increases
with the MTU.

D. Hardware estimates for the DTable scheduler

In order to obtain hardware estimates of the
DTable scheduler we have considered, apart from
the number of VCs and the MTU, the number of
table entries and the parallelization grade as design
parameters. Moreover, we have also calculated hard-
ware estimates to compare the original AS table
with the possible implementations of the DTable
scheduler shown in Section V-A.2.

Figure 16 shows the difference in silicon area and
arbitration time of the different table possibilities.
Note that the increment in time refers to both, the
minimum and maximum arbitration time required
by the scheduler. Specifically, the figure shows
the increment in silicon area and time respect the
original AS table scheduler. In all the cases, a table
of 128 entries with a parallelization grade of 16, 8
VCs, and a MTU of 32 is considered. Figure 16
shows that employing a fixed weight for all the
table entries (FixedW), which solves the problem
of the original table scheduler with variable packet
size, only requires 10% more silicon area than the
original AS table scheduler (Original).

However, in order to have a greater flexibility
when configuring the DTable scheduler, we can
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Fig. 14. Effect of the number of VCs and MTU over the silicon area and arbitration time required by the DRR-CA and the SCFQ-CA
schedulers.

choose between using a weight per each VC (W-
VC), using the three reserved bits of each table entry
(3-bits), or using two bytes to store the VC identifier
and the table entry (2-bytes).

Figure 16 shows that the 2-bytes option is the
most demanding one. This option requires 80%
more silicon area than the original AS table com-
pared with the 35% of the 3-bit option. Moreover,
the arbitration time is slightly higher (0.85%) than in
the rest of the cases, which have the same arbitration
time, and thus the increment is 0%. In the rest of this
work we will show statistics of the 2-bytes DTable
option because is the worst case for all the table
implementations. Moreover, this is the possibility
that provides the best flexibility and granularity.

Figure 17 shows the effect of the number of VCs
over the complexity of a DTable with 128 entries,
a parallelization grade of 16, and a MTU of 32.
Specifically, it shows the increment in silicon area
and arbitration time required respect the 2-VC case.
This figure shows that this parameter affects in a
high degree the silicon area required and, when the

number of VCs is very high, a little the arbitration
time. However, the effect is not so dramatic as in the
DRR-CA and SCFQ-CA cases. Note that from 2 to
8 VCs the arbitration time is the same, and thus the
increment is 0%. The reason because the number of
VCs does not affect as much the complexity as in
the DRR or SCFQ cases is that in the DTable case
the scheduling is made over the arbitration table
and not over a list of VCs, like in the DRR-CA
case where we search for the next active VC, or the
SCFQ-CA, where we search for the VC with the
minimum service tag.

Figure 18 shows the effect of the MTU value
over the complexity of a DTable with 128 entries, a
parallelization grade of 16, and 8 VCs. Specifically,
it shows the increment in silicon area and arbitration
time required respect the 2-MTU case. This figure
shows that the MTU is almost irrelevant for the
silicon area and arbitration time required by this
scheduler.

Figure 19 shows the effect of the number of
table entries over the complexity of a DTable with
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Fig. 15. Comparison of the silicon area and arbitration time required by the DRR-CA and the SCFQ-CA schedulers.
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a parallelization grade of 16, when the MTU is
32 and there are 8 VCs. Specifically, this figure
shows the increment in silicon area, cycle time, and
minimum and maximum time required to perform
the arbitration respect the silicon area and minimum
time required in the 32-entry case. This parameter
affects in a high degree both the silicon area and
the arbitration time. The increment in the silicon

area is due to the increment in the space required
to store the arbitration table and the extra logic to
handle it. The increment in the arbitration time is
due to the increment in the cycle time, but also
to the extra number of cycles required to process
a bigger table. Specifically, the increment in the
cycle time determines the increment in the minimum
time required to make the arbitration. Note that we
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use the same parallelization grade in all the cases
and thus, the same minimum number of cycles is
required to perform the arbitration (see Table I). On
the other hand, the maximum number of required
cycles increases with the table size and thus, the
maximum required time increases dramatically.

A way to reduce the arbitration time is to in-
crease the parallelization grade. Figure 20 shows
the effect of this parameter over a DTable of 128
entries, 8 VCs, and a MTU of 32. Specifically, this
figure shows the increment in silicon area, cycle
time, and minimum and maximum time required
to perform the arbitration, respect the silicon area
and minimum time required when the parallelization
grade is 1 (sequential search). This figure shows that
increasing the parallelization grade also increases
in a high degree the silicon area required. This
extra area is not so exacerbate when we increase
only a bit the parallelization grade. However, if

we increase the value of this parameter a lot, the
silicon area increases much faster. Given a certain
number of entries (128 in this case), the effect of
increasing the parallelization grade is to reduce the
maximum number of cycles required to perform the
arbitration at the cost of increasing the minimum
number of cycles required (see Table I). This effect
is shown in Figure 20. However, this figure shows
that increasing too much the parallelization grade
affects in a negative way both the minimum and
maximum arbitration time because of the increment
in the cycle time.

Until now we have shown the individual effects of
varying the value of the different design parameters
over a basic configuration of a 2-bytes DTable with
128 entries, a parallelization grade of 16, a MTU
of 32, and 8 VCs. Figure 21 shows a more general
picture in which we observe the effect of varying the
number of VCs for every table size. At the same
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Fig. 19. Effect of the number of table entries over the silicon area and arbitration time required by the DTable scheduler (8 VCs, a
paralelization grade of 16, and a MTU of 32).

time we vary the parallelization grade in order to
keep constant and equal to 16 the number of cycles
required to process all the table entries (number of
entries / parallelization grade = 16). Note that even
with this last consideration, the number of cycles
is not the same in each combination of number of
entries and parallelization grade (see Table III). The
increments shown are respect to DTable with 32
entries and 2 VCs.

Figure 21 shows that when the number of table
entries grows, the silicon area required increases
dramatically due to the accumulated effect of the
increment on the table size and the parallelization
grade. However, even increasing the parallelization
grade the arbitration time also grows a lot due to
the increment on the cycle time. A smaller arbi-
tration time could be achieved increasing more the
parallelization grade, however, this would increase
even more the silicon area required. Figure 21 also
shows that the number of VCs is only relevant for
the arbitration time for small arbitration table sizes.
When the arbitration table has lots of entries, the

number of VCs does not affect the cycle time and
thus, the arbitration time.

E. Comparing the DRR-CA and the SCFQ-CA
schedulers with the DTable scheduler

In the previous sections we have shown how the
different design parameters affect the complexity,
in terms of silicon area and arbitration time, of the
DRR-CA, SCFQ-CA, and DTable schedulers. In this
section we are going to compare the complexity of
these schedulers.

Figures 22 and 23 show a comparison of the
silicon area and arbitration time required with dif-
ferent number of VCs for the different schedulers
and, in the case of the DTable scheduler, different
number of table entries (we have also kept number
of entries / parallelization grade = 16). Note that not
all the possible combinations of number of VCs and
number of table entries make sense. If we have a lot
of VCs, we will probably need more table entries to
accommodate appropriately all those VCs. Note, for
example, that in an extreme case where we have 32
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Fig. 20. Effect of the parallelization grade over the silicon area and arbitration time required by the DTable scheduler (8 VCs, 128 entries,
and a MTU of 32).

TABLE III

COMBINATION OF VALUES FOR THE TABLE ENTRIES AND PARALLELIZATION GRADE AND ARBITRATION TIME IN CYCLES.

Number of table entries Parallelization grade Arbitration time (cycles)

32 4 6 - 13
64 8 7 - 14
128 16 8 - 15
256 32 9 - 16
512 64 10 - 17
1024 128 11 - 18

VCs and 32 entries, we should assign each VC to a
given table entry and we would not be able to make
any latency differentiation. On the other hand, if we
have very few VCs, it would be a waste of resources
to employ a lot of table entries. Therefore, we have
only shown the combination of 2 and 4 VCs with
32, 64, and 128 table entries, and 16 and 32 VCs
with 256, 512, and 1024 table entries. For the 8-
VC case we show the interaction with the possible
table sizes. Moreover, we have split the data in two
separate figures in order to show them more clearly.
Both figures show the increment on silicon area and

minimum and maximum arbitration time required
respect to the DRR-CA with 2 VCs.

Figure 22 shows the comparison of the schedulers
for a small number of VCs (2-8) and a small number
of table entries (32-128). This figure shows that,
as expected, the DRR-CA is the simplest scheduler
in terms of both, silicon area and arbitration time.
The atomic version of the SCFQ-CA scheduler is
the most demanding implementation also in both
aspects. Regarding the DTable scheduler and the
segmented version of the SCFQ-CA scheduler, Fig-
ure 22 shows that in general the DTable scheduler
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Fig. 21. Silicon area and arbitration time increment for the combined effect of the number of table entries and number of VCs for the
DTable scheduler (paralelization grade of 16, and a MTU of 32).

requires less silicon area than the segmented SCFQ-
CA scheduler. On the other hand, the SCFQ-CA
scheduler is faster than the DTable scheduler. How-
ever, as stated before, in this comparison we do
not take into account the extra time required by
the segmented SCFQ-CA scheduler to compute the
service tag.

Figure 23 shows the comparison of the schedulers
for a high number of VCs (8-32) and a high number
of table entries (256-1024). This figure shows that
the DTable scheduler is the most complex when the
number of table entries is 1024. When the table has
512 entries, only if it has 32 VCs it requires less
silicon area than the atomic SCFQ-CA scheduler.
When the DTable arbitration table has 256 entries
this scheduler requires less silicon area than the
atomic SCFQ-CA case. The time required in this
case by the atomic SCFQ-CA case is in general
higher than the minimum time required by the
DTable scheduler but smaller than the maximum
time. In almost all the cases the segmented SCFQ-
CA case and the DRR-CA schedulers require less

silicon area than the DTable with a size between
256 and 1024 entries.

VII. C ONCLUSIONS AND FUTURE WORK

In this work we have proposed specific im-
plementations for three fair queueing scheduling
algorithms: the DRR-CA, SCFQ-CA, and DTable
schedulers. We have optimized their implementation
in order to fullfill the complexity constrains in high-
performance networks. We have proposed imple-
mentation improvements over their basic definition
for the SCFQ and DTable schedulers. Moreover, we
have performed a complexity comparison study of
these three scheduling algorithms. In order to do so
we have implemented the schedulers in Handel-C
and obtained hardware statistics employing the DK
design suite tool.

We have studied the complexity in terms of sili-
con area and time required to perform the schedul-
ing. We have obtained hardware estimates for these
indices taking into account different values for some
design parameters. We have considered the number
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Fig. 22. Silicon area and arbitration time comparison of the different schedulers with a small number of VCs (DTable with a paralelization
grade of 16, and a MTU of 32).

of VCs and the MTU in all the cases. Moreover, for
the DTable scheduler we have also considered the
size of the table in terms of table entries and the
parallelization grade, which is the number of table
entries that we read each cycle. Furthermore, we
have also compared the complexity of the different
implementation options for the DTable scheduler.

The hardware estimates that we have obtained
have shown that the cost of modifying the original
AS table to handle in a proper way variable packet
sizes is very small (around 10% increment in silicon
area). If we want to fully implement the DTable
scheduler we only need to double the silicon area
required. This increment compared with the entailed
to increase the number of table entries or the paral-
lelization grade is quite small.

The hardware estimates obtained also show that,
as expected, the DRR-CA scheduler is the simplest
one. The DTable scheduler is in general the most
complex option when implementing large arbitra-
tion tables, which are required when there are a high
number of VCs. However, the DTable scheduler

can be a good option, at least in terms of silicon
area, when a small number of table entries is im-
plemented (32-256) if compared with the SCFQ-CA
scheduler.
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