
University of Castilla-La Mancha

A publication of the
Department of Computing Systems

LiO: an easy and flexible library of metaheuristics

by

Juan Luis Mateo and Luis de la Ossa

Technical Report #DIAB-06-04-1 (Ver. 2) November 2007

DEPARTAMENTO DE SISTEMAS INFORMTICOS
ESCUELA POLITCNICA SUPERIOR

UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

1

LiO: an easy and flexible library of metaheuristics

Juan Luis Mateo Luis de la Ossa

November 27, 2006

Contents

1 Introduction to LiO 3

I Using LiO as a tool 4

2 The LiO GUI 5

3 The configuration file 13

4 The command line 15

II Programming metaheuristics with LiO 19

5 Introduction 20

6 Individuals and data types 21

6.1 Individuals . 21
6.2 Defining data types: LiOBounds 22

7 Resources and tasks 23

7.1 Resources . 23
7.2 Dependent resources . 25
7.3 Defining tasks . 25

8 Programming metaheuristics 27

8.1 The class LiOEnv . 27
8.2 Using the LiO classes from the outside 28
8.3 Programming generic metaheuristics 30

8.3.1 An example . 32

9 Internal Configuration of LiO 35

10 Custom data types 38

1

III Algorithms in LiO 43

11 Introduction 44

12 Genetic Algorithms 45

12.1 Standard Genetic Algorithm . 45
12.2 CHC . 46

13 Estimation of Distribution Algorithms 48

13.1 Generic EDAs . 48
13.2 PBIL . 49

14 Local Search Algorithms 50

14.1 Multiple Restart Hill Climbing 50
14.2 Iterated Local Search . 51
14.3 GRASP . 51
14.4 Simulated Annealing . 52

15 Particle Swarm Optimization 54

2

Chapter 1

Introduction to LiO

This book describe LiO, that stands for Library of Optimization, a new tool
in the field of search algorithms and combinatorial optimization. This library
has been developed by SIMD group at the Computing Systems Department in
University of Castilla-La Mancha.

In this field there are already several others tools, but LiO has a new ap-
proach and intend to serve researchers, teachers, students and newbies, each one
on his level to work with metaheuristics. The main aim set at the beginning of
this project was that the result should be very easy to learn and to use. Be-
sides, another aim was generality, that is, LiO should be used in many different
scenarios.

That lead us to define three profiles of use:

• The use of LiO as support for teaching. Anybody could configure and run
this kind of algorithms without experience.

• Provide a set of algorithms a resources of common use in order to let
researchers use it without effort and allowing him to save time.

• The capability to adapt itself to new specific needs like adding new al-
gorithms or resources, changing the existing ones, or working with other
data types more complexes.

Another important characteristic is that LiO has been coded in Java. This
gives it portability and makes possible run LiO over almost all platforms nowa-
days.

3

Part I

Using LiO as a tool

4

Chapter 2

The LiO GUI

The LiO graphical user interface is the easiest way of deal with metaheuristics.
Anybody can execute several algorithms to solve distint problems, modify every
parameter and see the results in various views. The main window of this gui is
shown in figure 2.1. In this figure it can been seen the different areas which LiO
gui is made of.

Figure 2.1: LiO grafical user interface main window

First of all, at the upper left corner is the Search definition area. On this area

5

it can be selected which problem it’s going to be solved and which search algo-
rithm it’ll be used. Moreover, when both, task and algorithm, have been chosen,
their parameters can be modified using Configure buttons. This configuration,
task and algorithm objects and its parameters recursively, will be shown in the
Current configuration area. With the buttons underneath it can be saved to a
file, to use it again after, and be loaded a saved configuration. A configuration
file stores all configuration parameters, what algorithm is used, what task and
more. In chapter 3 it will be seen more details about configuration file.

To the right of Search definition area is the Options area. Here it can be
changed the amount computation the search algorithm will do at maximum if
optimum value it is not found (Stop Condition). It can be set maximum number
of evaluations or how much time at maximum, among other options. It can also
be changed the information shown as result of a execution (Search Output). In
this case there is an interesting option, called tag, by mean of that it can be
set a text which will be printed with the output to identify each execution in
an easier way. All execution results will be shown in the Results text area in
reverse order, that is, last execution will be at top. The content of Results text
area can be saved to a file with the Save button, and with Show button it can
be chosen between three charts. The first one shows evaluations by iterations,
the second one shows fitness evolution by iterations and the last one shows the
convergence velocity defined as

C(t) = log

√

fmax(0)

fmax(t)
,

where fmax(i) is the best fitness value at the ith iteration.

Last area in top panel, Execution, is to manage execution process. Run

button starts execution or allow to stop it if it’s running. Show Progress button
shows an small window in which it can be seen evaluations, iterations and fitness
values. This values are refreshed every second.

At the bottom of the main window there is the Error log area where will be
shown all notifications about errors or warnings both in configuration process
and execution.

Up to now, it has been seen LiO graphical interface in a static way. Next
it is time to see how we can use all this elements to run, learn and fun with
metaheuristics. First of all, it is necessary to select which problem and search
algorithm it’s wanted to run. This is done by clicking at the corresponding text
field as it can be seen in figure 2.2 and 2.3. Here it can be chosen from these
lists.

When it is selected a task and a search algorithm, default configuration for
these objects is shown in the Current configuration area, also defaults objects
for stop criterion and output options are selected. This is depicted in figure 2.4.

As it is been said, this is the default configuration, but it can be changed,
either loading a configuration file or using the Configure buttons. If it is used

6

Figure 2.2: List for selecting problems included in LiO.

Figure 2.3: List for selecting search algorithms included in LiO.

the later option, the windows depicted in figures 2.5, 2.6, 2.7 and 2.8 will ap-
pear, for configuring task, search algorithm, stop condition and search output,
respectively. In this windows it can be changed values and selected others object
for operators as shown in figure 2.6, where a list to select the selector operator
has appeared. For objects that have parameters to configure, another Configure

button is presented enabled, and if it is clicked on it another window will appear
like this one to change its own parameters. If mouse pointer is hold over each
parameter value it can be seen a short description, if it is available.

When the configuration for these objects is finished, it is time to run the.
algorithm. Then the Run button must be clicked and its label change to Stop,
and it can be clicked again to stop execution. Besides the progress bar below
will start to move and it can be clicked on Show Progress button to see in a
small window how evolves our algorithm. This is shown in figure 2.9.

Once the execution is over the results are shown in Results area as is pre-
sented in figure 2.10.

To get a richer information for this execution, a couple of charts, shown
in figures 2.11 and 2.12, can be used through Show button. The first chart
represents number of evaluations in total done per each generation. The second
chart shows the best fitness value found, globally, per each generation. If right

7

Figure 2.4: Configuration shown after selecting task and search algorithm.

Figure 2.5: Window to modify task parameters.

Figure 2.6: Window to modify search algorithm parameters.

8

Figure 2.7: Window to modify stop condition parameters.

Figure 2.8: Window to modify search output parameters.

botton mouse is clicked over this charts, a pop-up menu will appear with some
options like zoom in and zoom out, change its legend, its font type and size,
and save this chart as a picture.

And finally, there are two other methods to load objects in LiO (search
algorithm, task, operators, etc.). In the previous figures showing a list of objects
to load it can be seen an item at the end called Custom. If this item is selected,
then the Load Object window will appear in which it can be written a class name
(full qualified) if the required object is in class path, or a file name for a Java
class file (with full path) otherwise. To select a file easily there is the option
by clicking the Explore button. If this happend a standard open file dialog will
appear in which it can be selected a file from file system. This can bee seen in
figure 2.13

9

Figure 2.9: Main window while an execution is in progress.

Figure 2.10: Results provided after algorithm finish its execution.

10

Figure 2.11: Chart showing evaluations by generations for the last execution.

Figure 2.12: Chart showing fitness by generations for the last execution.

11

Figure 2.13: Windows to select objects not included in LiO.

12

Chapter 3

The configuration file

A configuration file is a plain text file that in each line has an assignment for
some parameter. These parameters can be for any search algorithm and can set
values for an specific problem or for the objects that control the output and the
stop criterion. An example of a configuration file is shown in figure 3.

In a configuration file lines that start with a sharp character (#) are ignored,
so are used to include comments. Each assignment line is made of a left part,
an equal sign and a value. The left part show which parameter has to be fixed.
Each parameter must to be written in a canonical form like classes and packages
in Java, that is, all objects which contain recursively that parameter have to
be written in hierarchycal order. Values can be numbers, integer and decimal,
strings, enclosed betwen doubled quotes if contains spaces, and Java classes for
setting what resource must be used by the current resource.

Parameters and objects names are those declared in the approppiate Java
class file. For example, if it is wanted to change the point parameter for the
one point crossover in a genetic algorithm, then it should be known that in the
genetic algorithm class the crossover resource is named as crossover, and in the
one point crossover class the point parameter is named point. Then the line
necessary, if the new value is 15, is the following: crossover.point=15.

Obviously, it not easy to know and remember the name of all parameter of
all objects in LiO to make a configuration file. Then it can be used LiO gui
interface to configure all parameter necessary and save that configuration to a
file. Now, if it’s needed just to change a few values to make more executions, it
can be used that file as a template.

If it’s necessary to establish parameters for others objects but search al-
gorithm, then prefixes have to used. For all parameters regarding problem
task must be used, searchOutput for the object controlling the output and
stopCondition for the object controlling the stop criterion.

In a configuration file is not needed specify values for all parameters. In this
case it is chosen the apropiate object from the LiO internal configuration (see

13

1 #search a lgor i thm parameters
2 search=l i o . s earch . g en e t i c . StdGeneticAlgorithm
3 probMutation=0.05
4 popu la t i onS i z e=200
5 probCrossover =0.6
6
7 s e l e c t o r=l i o . s e l e c t o r s . RouleteWhee lSe lector
8 s e l e c t o r . ranking=f a l s e
9

10 r e p l a c e r=l i o . replacement . S impleE l i t i s tRep lacement
11 r e p l a c e r . maxPreserved=1
12 r ep l a c e r . k e ep Ind iv idua l s=f a l s e
13
14 generator=l i o . g ene ra to r s . b i t cha in . RandomGenerator
15
16 mutation=l i o . mutation . b i t cha in . BinaryMutation
17
18 c r o s s ov e r=l i o . c r o s s ov e r . b i t cha in . OnePointCrossover
19 c r o s s ov e r . po int=0
20
21 #task parameters
22 task=problems . b i t cha in . Ackley
23 task . upperLimit =511.0
24 task . lowerLimit=−512.0
25 task . s i z e =10
26 task . gray=f a l s e
27 task . bitsPerNumber=10
28
29 #output opt ions
30 searchOutput . tag=”This t ex t he lp to i d e n t i f y t h i s execut ion ”
31
32 #stop c r i t e r i o n
33 stopCondit ion . maxTime=5000

Figure 3.1: Configuration file example

chapter 9), and its values are those defined in the class. We can for different
algorithms and resources and use this file in several execution, here parameters
not matching a given resource are ignored without warning.

14

Chapter 4

The command line

Running LiO from the command line is easy because all algorithm will have the
same interface. All it is needed is to select a class implementing some search
algorithm as the Java entry point. For example, assuming LiO classes are in the
classpath, any search algorithm can be execute with -h flag to see the options.
The result is shown in figure 4.1.

$ java l i o . s earch . g en e t i c . StdGeneticAlgorithm −h

Generic opt ions f o r the search .

− f i l e <c o n f f i l e > Name o f the f i l e conta in ing the
c on f i gu r a t i on f o r the search

−param <param>=<value> Name o f the parameter and
value .

−output <o u t f i l e > Name o f the f i l e to output
r e s u l t s .

−b To avoid show r e s u l t s through standard output .
−h Show th i s he lp message .

Figure 4.1: Help message for any search algorithm.

The are two kind of options. In the first group are -file and -param and
control the configuration of all objects involve in the search process. The second
one, -output and -b, tells how will be generated the algorithm’s output.

More specifically, the -file option is used to set a configuration file which
contain a list of pairs of parameter and value as it had been seen in chapter
3. The -param option fix the given parameter to an specific value, here it has
to be used the same format as a line in a configuration file. It’s important to
realize that always if some parameter is set both in configuration file and with
a -param option, the one specified in configuration file is ignored. Later, some
examples will be seen to clarify these concepts.

15

Concerning output parameters, it is needed to say that always all algorithms
yield a formated output in several lines unless the -b option is provided. In these
lines is presented the name of the search algorithm, the name of the problem
to solve, the best result found, and information about iterations/generations,
evaluations and time. With -output option it can be provided a file name in
which the execution information is added to the end in a line and all fields are
separated by a tab character.

Now it is time to some examples. To run an algorithm the only thing is
necessary to provide it’s the problem to solve. Then, in the first example the
-param option will be used to set a task object. The command line used and
its result is shown in figure 4.2

$ java l i o . s earch . g en e t i c . StdGeneticAlgorithm −param task=
problems . b i t cha in . Ackley

Resu l t s f o r the l i o . s earch . g en e t i c . StdGeneticAlgorithm
algor i thm :

Task to s o l v e : problems . b i t cha in . Ackley
Best f i t n e s s : −19.264344891844445
Number o f i t e r a t i o n s to best : 931 .0
Number o f i t e r a t i o n s : 1000 .0
Number o f eva lua t i on s to best : 186427.0
Number o f eva lua t i on s : 200200.0
Time to best : 18757.0 ms
Total time : 20146.0 ms

Figure 4.2: Simple execution setting problem to solve

Next it can be seen how to use output options to send execution result to a
file. In this case the -b option is provided to avoid standard output, and results
will be stored in a file call Ackey.out. The order of all fields are the same as in
standard formated output. This is shown in figure 4.3.

$ java l i o . s earch . g en e t i c . StdGeneticAlgorithm −param task=
problems . b i t cha in . Ackley −b −output Ackley . out

$ cat Ackley . out
l i o . s earch . g en e t i c . StdGeneticAlgorithm problems .

b i t cha in . Ackley −19.84739791983819 921 .0
1000 .0 184434.0 200200.0 18824.0 20479.0

Figure 4.3: Example of use of output options

In figure 4.4 it can be seen how to use a configuration file and how paramters
set by -param option have higher priority than those set in the configuration
file. Here it is used the configuration file shown in chapter 3, and in that file
was provided a value for the paramter tag for the search output object. It can

16

be seen how this information is shown in the first line of the results and it is
taken from the -param option. In previous examples this line was empty.

$ java l i o . s earch . g en e t i c . StdGeneticAlgorithm −param
searchOutput . tag=example−1 − f i l e execut ion1 . conf

example−1
Resu l t s f o r the l i o . s earch . g en e t i c . StdGeneticAlgorithm

algor i thm :
Task to s o l v e : problems . b i t cha in . Ackley

Best f i t n e s s : −19.999982525215277
Number o f i t e r a t i o n s to best : 114 .0
Number o f i t e r a t i o n s : 237 .0
Number o f eva lua t i on s to best : 23012.0
Number o f eva lua t i on s : 47600.0
Time to best : 2446 .0 ms
Total time : 5006 .0 ms

Figure 4.4: Execution showing both optiong -param and -file

With LiO some resources can be loaded directly from its compiled class file.
To do this the class file name can be given, with its path, and LiO will load the
resource implemented in that file. This is depicted in figure 4.5.

$ java l i o . s earch . g en e t i c . StdGeneticAlgorithm −param task=
problems . b i t cha in . Ackley −param c ro s s ov e r=custom/
CustomOnePointCrossover . c l a s s

Resu l t s f o r the l i o . s earch . g en e t i c . StdGeneticAlgorithm
algor i thm :

Task to s o l v e : problems . b i t cha in . Ackley
Best f i t n e s s : −19.907290030232772
Number o f i t e r a t i o n s to best : 817 .0
Number o f i t e r a t i o n s : 1000 .0
Number o f eva lua t i on s to best : 163610.0
Number o f eva lua t i on s : 200200.0
Time to best : 16884.0 ms
Total time : 20694.0 ms

Figure 4.5: Use of an external resource by its class file.

Finally, to end with use of command line, is presented a tool which can show
all information about parameters of all resources in LiO. This functionality is
in the lio.misc.DescribeResource class. This class should be execute with a
full qualified class name as argument and it presents as result useful information
for that class. The given class must be accesible in Java class path. For basic
data-types parameters their default values are shown, and for each element a

17

sort description can be shown (Tip field). This description is given by the
programmer. An example of this is in figure 4.6.

$ java l i o . misc . Descr ibeResource l i o . s earch . g en e t i c .
StdGeneticAlgorithm

l i o . LiOSearch=l i o . s earch . g en e t i c . StdGeneticAlgorithm
Desc r ip t i on : Implements the standard g ene t i c a lgor i thm
Resources :

@ s e l e c t o r :
Tip : S e l e c t s i n d i v i d u a l s from a populat ion in order to

c r o s s them .
@ r ep l a c e r :
Tip : Generates a new populat ion by keeping some o f the

i n d i v i d u a l s in the former one .
@ generator :
Tip : Generates the i n i t i a l populat ion .
@ mutation :
Tip : Operator o f mutation .
@ c ro s s ov e r :
Tip : Operator o f c r o s s ov e r .

Parameters :
& probMutation o f type double = 0.05
Tip : Probab i l i t y o f mutation .
& popu la t i onS i z e o f type i n t = 200
Tip : S i z e o f the populat ion .
& probCrossover o f type double = 0 .6
Tip : P robab i l i t y o f c r o s s ov e r .

Figure 4.6: Use of lio.misc.DescribeResource to see information about re-
sources.

18

Part II

Programming

metaheuristics with LiO

19

Chapter 5

Introduction

In the previous chapters it has been shown how to instanciate and execute the
algorithms available in LiO. However, in most cases the user will need to modify
the resources of the library, or even create new ones, to perform his work. In
this part we go into some aspects of the library that makes possible to cover
such needs.

As it will be seen, the software architecture of LiO make it totally expan-
sible and flexible, since new resurces can be incorporated to it inmediatly and
indefinitely. Moreover, such resources can be reused in programs external to
the library, so it can also be seen as a repository of objects that prenvents
researchers from implementing a big amount of code.

In order carry out progressive approach to programming with LiO, we firstly
explain the basic structures used to encode the potential solutions to the problem
and, afterwards, we will study how to build resources that work with such data.
Last, it will be explained how to build search algorithms from this resources,
either not integrated or integrated in LiO.

20

Chapter 6

Individuals and data types

6.1 Individuals

The abstract class Individual is used to represent each potential solution to a
problem regardless of the way it is encoded. It basically implements three main
functions:

• public double value(): It returns the result of evaluating the individual
with the current function. This value is stored in the private member
value.

• public boolean isEvaluated(): Allows knowing if the individual has al-
ready been evaluated. It is used by value() so as to avoid carrying out
the same evaluation several times.

• public void change(): This method changes the state of the individual to
“not evaluated”.

This class has also some members common to every kind of individual as it can
be size.

Besides Individual, LiO uses a particular class (descendent of the former
one) to work with each particular encoding. For the time being there are three
kinds of data types supported on the library:

• BitChain : Chains of bits.

• ContChain : Chains of real numbers.

• Permutation : Permutations.

As it can be seen, in figure 6.1 elements in each object can be accessed
directly if necessary.

In chapter 10, it will be described how algorithms in LiO can work with
particular (custom) encodings, different than the existing.

21

BitChain bCh = new BitChain(100);

int[] bcElements = bCh.getElements();

ContChain cCh = new ContChain(100);

double[] ccElements = cCh.getElements();

Permutation perm = new Permutation(100);

int[] perm = per.getElements();

Figure 6.1: Example of access to the elements of the individuals.

6.2 Defining data types: LiOBounds

Besides the data type used to encode the solutions of a problem, it becomes
necessary some other information about them such as their size, range of values
that can take each variable, etc.

Objects descendent of lio.individuals.LiOBounds are used to completely
specify the potential solutions. This abstract class contains a member size

which determines their maximum size.

Each class descendent of LiOBounds is used to work with a certain encoding.
For instance, figure 6.2 shows a portion of code from the class ContChainBounds.
As it can be seen, it is used to define problems that work with chains of real
numbers (objects ContChain), and provides members and methods to define the
size of these chains and the range of values that can take each variable.

public class ContChainBounds extends LiOBounds{

double[] lowerlimits,upperlimits;

public ContChaintBounds(int pSize){

size=pSize;

lowerLimits = new double[size];

upperLimits = new double[size];

}

public void setRanges(double lower, double upper){

Arrays.fill(lowerLimits,lower);

Arrays.fill(lowerLimits,upper);

}

}

Figure 6.2: Some code of the class ContChainBounds

LiO also provides classes to define problems which work with chains of bits
and permutations.

22

Chapter 7

Resources and tasks

7.1 Resources

As it was mentioned before, the LiO library was initially designed to avoid im-
plementing pieces of code which are frequently used when solving problems by
means of metaheuristics and evolutionary computation. In this sense, LiO can
be seen as a source of objects necessary to build search algorithms. These ob-
jects are called resources and can be operators, problems, objects to manage
statistics, output settings, and even the algorithms themselves. The function-
ality of everyone is given by the interface they implement. For instance, all
resources (objects) which implement the interface Crossover will be crossover
operators.

From the point of view of design, a resource is an object whose behavior
is known, and is thought to be as independent as possible from the rest of
the resources. That philosophy makes them easy to use and useful in different
contexts. This modularity also deals with the other design goal: Developing an
structure which allows the library growing indefinitely.

Due to these facts the search algorithms, which are the executable part
of the library, do not have complete information about the resources they
need to instantiate. Therefore, it becomes necessary for a resource to de-
scribe itself, and so, this is their common functionality. Thus, the interface
lio.core.LiOResource is implemented by every resource, and basically consists
of one function getDefinition() that returns a description of it. The class
lio.core.LiOResourceDefinition is the one used to handle such descriptions.

Figure 7.1 shows an example of construction of a LiOResourceDefinition

in the implementation of the function getDefinition(). As it can be seen,
the description contains the interface that describes the functionality of the
resource, its name and description, and the members with their corresponding
descriptions. In this definition we must set the kind of data that the resource is
compatible with. If the resource can manage several kind of data we can omit

23

this sentence.

public LiOResourceDefinition getDefinition() {

LiOResourceDefinition def = new LiOResourceDefinition(

"lio.crossover.Crossover"

"lio.crossover.bitchain.OnePointCrossover"

"Implements the one-point crossover.");

def.addMember("point", "Point of crossover");

def.setKindOfIndividuals("lio.individuals.BitChain");

return def;

}

Figure 7.1: Implementation of getDefinition for a crossover operator

As it can be seen, definitions only provide the name of the members and
no information about their data types is given, so it becomes necessary a way
for the search algorithms to instantiate and set up the resources. Such way is
grounded in reflexivity and allows the core of the library accessing the resources
by only knowing their definitions.

The instantiable members of each resources can be integers, booleans, Strings,
doubles or even resources. For each one of them, access functions must be imple-
mented. These functions must follow a simple rule also used by the JavaBeans
convention. Thus, if we have a member called member the method to put its
value must be named as setMember, whereas the method to read its value must
be implemented by getMember. Regard the capital letter after set or get.

Figure 7.2 shows the implementation of the access methods for the member
point in the one point crossover.

public void setPoint(int pPoint) {

point = pPoint;

}

public int getPoint() {

return point;

}

Figure 7.2: Implementation of the access methods for the one point crossover

24

7.2 Dependent resources

In some cases, resources need some information about the task being solved to
perform. For instance, a mutation which works with continuous vectors must
generate numbers in the ranges defined on the task. These resources are called
dependent and so implement the interface lio.core.LiODependentResource.

This interface only has a method getTaskInformation(LiOTask) that allows
extracting the useful information. An example of it can be seen in Figure 7.3.

int size;

double upperLimits[];

double lowerLimits[];

public void getTaskInformation(LiOTask task){

ContChainBounds bounds = (CountChainBounds)task.defineIndividuals();

size = bounds.getSize();

upperLimits = bounds.getUpperLimits();

lowerLimits = bounds.getLowerLimits();

}

Figure 7.3: Implementation of the access methods for the one point crossover

7.3 Defining tasks

LiO uses objects descendent of the abstract class LiOTask to define the problems
that are going to be solved. These objects must define three functions:

• public LiOBounds defineIndividuals(): Which returns a LiOBounds object
that defines the potential solutions.

• public double evaluate(Individual individual): Which receives an indi-
vidual and returns its fitness.

• public double optimum(): Which returns the optimum value of the prob-
lem.1

Moreover, as almost every object in the library, LiOTask is a resource, so it
must implement the interface LiOResource. In order to make things easier, the
function getDefinition() is not abstract, so it only has to be written when the
tasks have some accessible members.

Figure 7.4 shows the implementation of the function OneMax. As can be
seen, it has an instantiable member, which determines the size of the problem

1This function is not abstract so it has not got to be overridden

25

and thus, of their potential solutions. defineIndividuals() returns and object
BitChainBounds built with the current size, so that the algorithms can “know”
that this problems is encoded with chains of bits. Concerning to the function
evaluate it is worth pointing out that it receives an Individual as parameter and
not a BitChain. This is done for generality. In order to access the methods of the
BitChain a cast must be done. In this case, the optimum of the problem is given
by the size. Last, we can see the implementation of getDefinition() , where
the information about the kind of resource and its parametrizable members is
given.

public class OneMax extends LiOTask {

int size=100;

public LiOBounds defineIndividuals(){

BitChainBounds bounds = new BitChainBounds(size);

return bounds;

}

public double evaluate(Individual individual){

double fitness=0;

BitChain bitChain = (BitChain) individual;

int[] elements = bitChain.getElements();

for (int i = 0; i < elements.length; i++)

fitness = fitness + elements[i];

return fitness;

}

public double optimum(){ return size; }

public LiOResourceDefinition getDefinition(){

LiOResourceDefinition def = new LiOResourceDefinition("lio.LiOTask",

"problems.bitchain.OneMax", "Implements the One Max problem.");

def.addMember("size", "Size of the problem");

def.setKindOfIndividuals("lio.individuals.BitChain");

return def;

}

public int getSize(){ return size; }

public void setSize(int pSize){ size=pSize; }

}

Figure 7.4: Code for the binary function OneMax

26

Chapter 8

Programming

metaheuristics

As it has been seen in the previous chapters, LiO can be considered as a set of
resources with a defined behaviour and interfaces that can be used to instantiate
the existing search algorithms or build new ones.

This chapter shows how to build search algorithms by using these resources
in two circumstances: When the algorithms obey to a particular use and are
not integrated in LiO and when they are wanted to be a part of the library.

8.1 The class LiOEnv

The class LiOEnv has some items that are decared with static modifier, so that
they can be accessed anywhere in the library. It can be seen in figure 8.1.

This class has four members:

• errorLog: this object, of type LiOErrorLog, is used as an interface for the
system of notification messages. Any object can use it to send message
about errors or warnings.

• task: is the problem to be solved.

• statistics: this object holds all statistical information about algorithm
execution. It has some methods to access this statistics and to provide it
information about execution status.

• random: is the random numbers generator for the whole library, so we can
set a fixed seed in order to make repeatable executions.

The last two methods are related with task object. With problemSize any
resource can know individuals size defined in the problem. setTask is used to
set which problem is to be solved.

27

public abstract class LiOEnv {

public static LiOErrorLog errorLog = new LiOPrintStreamErrorLog();

public static LiOTask task = null;

public static Statistics statistics = new Statistics();

public static Random random = new Random();

public static double random(){

return random.nextDouble();

}

public static int problemSize() {

return task.defineIndividuals().getSize();

}

public static void setTask(String pTask) {

task = (LiOTask) LiOResourceFactory.getHandle().createResource(

"lio.LiOTask", pTask);

}

}

Figure 8.1: The class LiOEnv.

8.2 Using the LiO classes from the outside

The first case of use of LiO arises when it becomes necessary to program a new
algorithm with some specific purpose but there is no need to integrate it on the
library. In this sense, LiO can be seen as a repository which provides pieces of
code that can be used without any restriction. Next, we show how to use it
with an example.

Imagine that we want to program the pseudo-code in figure 8.2. It only
generates an individual and mutates it until there is no improvement in 10
consecutive mutations. And let’s suppose that we have wanted to solve the
function in problems.contchain.OneMax, which takes this form:

f(x) = x1 + . . . + xn, n = 100

where xn is a real number in [0, 1].

First of all, we must know the kind of data we are working with so that
to determine the available resources. In this case, as mentioned above, the
problem will be codified on a vector of real values, so we must use the class
lio.individual.ContChain to represent the individuals.

Next step consists of determining which resources are needed to build the
algorithm. In this case, we only need two:

• A generator to create an initial solution.

28

testSearchAlgorithm(){

solution=GenerateSolution();

best=fitness(solution);

noImprove=0;

while (noImprove<10){

newSolution=mutate(solution);

candidateFitness=fitness(newSolution);

if (candidateFitness>mejor){

solution=newSolution;

best=candidateFitness;

noImprove=0;

}

else

noImprove++;

}

}

Figure 8.2: Pseudo-code of an example search algorithm.

• A mutation to mutate the individuals.

The first one must be chosen among all resources which implements the
interface lio.generators.Generator and works with chains of continuous val-
ues, for instance, lio.generators.contchain.RandomGenerator. In the case of the
mutation, the resources must implement the interface lio.mutation.Mutation.
Among all the available operators we have chosen lio.contchain.MinMaxMutation

With these two objects we can already build the algorithm without even
using the class LiOEnv. In this case, we would get the evaluation value by
accessing the evaluate function of the task directly. This would be done as
follows:

value = task.evaluate(Individual)

However, in order to make things easier, we can also take advantage of the
members of the class LiOEnv. Thus, we can use the member value() of the
individuals as well as the statistics member.

The declarations for the search algorithm can be seen in figure 8.3. As we
see, we have only had to declare the two resources described, and a couple of
individuals for the current and new solutions.

Figure 8.4 shows the constructor. As can be seen, the first thing to do
when working with the LiO class is instantiating the task used, in this case, to
perform evaluations. This way, statistics will be computed automatically. Other
interesting thing to point out is the way that information concerning to the task

29

import lio.LiOEnv;

import lio.individuals.ContChain;

import lio.generators.contchain.RandomGenerator;

import lio.contchain.MinMaxMutation;

import problems.contchain.OneMax;

public class testSearchAlgorithm{

private ContChain solution;

private ContChain newSolution;

private RandomGenerator generator;

private MinMaxMutation mutation;

. . .

Figure 8.3: Declarations for the search algorithm

is passed to the resources. This is necessary, as seen in section 7.1 because both
of them implement the interface LiODependentResource.

public testSearchAlgoritm(){

LiO.task = new OneMax();

generator = new RandomGenerator();

mutation = new MinMaxMutation();

generator.getTaskInformation(LiOTask);

mutation.getTaskInformation(LiOTask);

}

Figure 8.4: Constructor of the search algorithm

Once all objects have been declared, it is time to build the search function.
In the code of Figure 8.5 can be seen that there are only necessary a few lines
of code to write it.

8.3 Programming generic metaheuristics

We have seen how to program an algorithm by using the resources in LiO. The
integration of an algorithm in the library needs some additional steps. However,
it could be interesting because of two main reasons:

• They can be executed by means of the interfaces provided by the library
(GUI and command line).

• We can take advantage of the architecture of the library in order to create
generic and instantiable algorithms.

30

public void search(){

solution = generator.generate(1)[0];

while (LiO.statistics.getNumEvalsWithoutImproving()<10){

newSolution = (ContChain)solution.clone();

mutation.mutate(newSolution);

if (newSolution.value()>solution.value()

solution=newSolution;

}

System.out.println("Result = "+LiO.statistics.getBestFitness());

}

Figure 8.5: Search function of the test algorithm

In order to know how to carry it out, it is necessary to understand the
behaviour of LiO when executing an algorithm. This can be divided into 4
parts:

• Reading of the algorithm configuration. This will be provided either by a
configuration file or the graphical user interface, and contains the chosen
instances for the required resources and the values for the parameters.
Moreover, the configuration also gathers information about stop condi-
tions, output formatting, etc.

• Checking of the datatype consistency among the task, the resources and
the own algorithm. As mentioned, there is a lot of resources or algorithms
which work with a certain kind of data. LiO checks whether the datatypes
of the specified resources are consistent. If the algorithm can be executed,
it assigns default values for those resources and members which hasn’t
been specified on the configuration file.

• Once that LiO has automatically loaded a correct and concrete configu-
ration, all the objects are built.

• Last, the algorithm is executed.

All this tasks are transparent to programmer and are implemented in the
class lio.search.LiOSearch. All the classes which implement search algorithms
must inherit from this one and so, must implement two abstracts functions:

• public abstract boolean worksWith(LiOTask kindOfTask). There are some
algorithms which are not generic, that is, can not work with every kind
of data. For instance PBIL can only deal with binary problems. This
function allows knowing if the algorithm is able to work with the data
used by the task.

31

• public abstract void run(); Which implements the main loop of the al-
gorithm.

There are also some members of LiOSearch that are instantiable (search is
also a resource) and can be useful for the programmer:

• public static SearchOutput searchOutput. It yields an interface with the
LiO.statistics object that allows defining the format of the output. This
class implements the interface LiOResource so that it can be adapted to
the different kind of statistics or it can show them in a different way.

• public static StopCondition stopCondition. This object configures the
stop conditions of the algorithms, so it is also connected with the object
LiO.statistics. This class is also a resource, so it can be extended if
there must be implemented an stop condition not usual as, for instance,
the total distance run by ants when solving an instance of the tsp.

There is also a function, protected boolean stopCondition() that returns
true depending on the stopCondition seen above or whether there has been
some indication for the main thread to stop.

Last, it provides a static function that allows performing all the necessary
operations to build an algorithm and running it in a different thread:

public static boolean execute(LiOSearch algorithm, String[] options);

8.3.1 An example

In order to give a clearer view of the algorithms construction, this section shows
how to implement an algorithm so that it can be integrated in LiO. Furthermore,
the algorithm will be generic, that is, it will be able to work with every kind of
data.

Firstly, let’s on the declarations. As can be seen in figure 8.6, since we
don’t know the kind of data necessary to solve the task, we use the abstract
class Individual. The same way, the generator of individuals and the mutation
operator are not instantiated with a certain class, but they are declared with
the interfaces which define the functionality.

As mentioned in the section above, the concrete classes and objects will be
generated by automatically by LiO depending on the configuration file.

Next, figure 8.7 shows the implementation of the function worksWith. Since
there are no restrictions in this case, it is not necessary checking the task and,
therefore, function always return true.

Since a search algorithm is also a resource, it becomes necessary to define it.
In figure 8.8 we see such definition. As can be seen, it implements the abstract
class LiOSearch. And it has three members, which are declared the same way
regardless whether they are resources or not.

32

import lio.LiOEnv;

import lio.individual.Individual;

import lio.generator.Generator;

import lio.mutation.Mutation;

public class genTestSearchAlgorithm{

private Individual solution;

private Individual newSolution;

private Generator generator;

private Mutation mutation;

private double prMutation;

Figure 8.6: Declarations for the generic version of the search algorithm.

public boolean worksWith(LiOTask kindOfTask){

return true;

}

Figure 8.7: Method worksWith return always true because this algorithm can
deal with any task.

public LiOResourceDefinition getDefinition{

LiOResourceDefinition def;

def = new LiOResourceDefinition("lio.LiOSearch",

"lio.search.genTestSearchAlgorithm");

def.setDescription("Example algorithm");

def.addMember("prMutation","Probability of Mutation");

def.addMember("generator","Generator of solutions");

def.addMember("mutation","Mutation Operator");

return def;

}

Figure 8.8: Declaration for the getDefinition method, showing algorithm’s
members, description, name and type.

33

Next, figure 8.9 shows the definition of the method implementing the search
loop. As can be seen, it is very similar to the shown in the previous chapter. It
is worth noticing that the resources are compatibles with the kind of data so,
despite the work is done with individuals, resources perform a cast.

The last function in the loop, cleanExecution(), notifies to LiO the end of
the search algorithm.

public void run(){

solucion = generador.generate(1)[0]

while (!stopCondition()) {

statistics.newIteration();

newSolution = (Individual) solution.clone();

mutation.mutate(newSolution,prMutation);

if (newSolution.value()>solution.value())

solution = newSolution

}

cleanExecution();

}

Figure 8.9: Method for the search process of this algorithm.

Last, the only thing left is the main method so that this algorithm can be
executed. In figure 8.10 is shown how to implement this method. Only to
lines are needed in all cases, one to instantiate an object for the algorithm, and
another in which execute method are used to begin execution.

public static void main(String[] args) {

genTestSearchAlgorithm alg = new genTestSearchAlgorithm();

execute(alg, args);

}

Figure 8.10: Main method for executing this algorithm.

34

Chapter 9

Internal Configuration of

LiO

LiO has a file where are registered all resources included on it, grouped by the
data type used. This list of resources is used in the graphical interface to offer
us the choices in configuration process. Beside, when a search algorithm is built
and all its resources must to be loaded, if a particular resource has not been
declared either by configuration file or by command line default values have to
be used. This default values are what resource must be used for a particular
data type, and are in that file too.

@lio.individuals.ContChain

& lio.probdistributions.ProbDistribution

* lio.probdistributions.contchain.MarginalProbabilityVector

& lio.crossover.Crossover

* lio.crossover.contchain.ArithmeticalCrossover

- lio.crossover.contchain.SimpleCrossover

- lio.crossover.contchain.LinearCrossover

- lio.crossover.contchain.BLXAlphaCrossover

- lio.crossover.contchain.DiscreteCrossover

- lio.crossover.contchain.ExtendedIntermediateCrossover

- lio.crossover.contchain.ExtendedLineCrossover

- lio.crossover.contchain.FlatCrossover

- lio.crossover.contchain.WrightsHeuristicCrossover

& lio.mutation.Mutation

* lio.mutation.contchain.RandomMutation

- lio.mutation.contchain.MinMaxMutation

& lio.generators.Generator

* lio.generators.contchain.RandomGenerator

Figure 9.1: Part of LiO internal configuration file.

35

In figure 9.1 it can be seen a part of the LiO internal configuration file
up to now. In this figure it is shown resources compatible with continuous
chain individuals. Each data type is preceded by an ’at’ symbol (@), each
kind of resource must have an andpersand character (&), and for each concrete
implementation of that resource has an asterisk (*) as prefix if it’s the default
resource or a hyphen (-) otherwise. Each element must be in a single line
and the order is important, because for each resource read from that file LiO
understand that it is of the last kind of resource read and for the last data type
read. Indentation is only for clearlyness.

In LiO there are other resources that can be used for every data type. In
this case, this resources are under the ’nondependent’ category as it can be seen
in figure 9.2.

@nondependent

&lio.generators.GreedyConstructor

* lio.generators.GreedyConstructor

& lio.selectors.Selector

* lio.selectors.RouleteWheelSelector

- lio.selectors.KTournement

& lio.replacement.Replacement

* lio.replacement.SimpleElitistReplacement

& lio.memetic.HillClimbing

* lio.memetic.HillClimbing

& lio.memetic.SimulAnnealing

* lio.memetic.SimulAnnealing

& lio.perturbation.Perturbation

* lio.perturbation.MutationBasedPerturbation

& lio.misc.SearchOutput

* lio.misc.SearchOutput

& lio.misc.StopCondition

* lio.misc.StopCondition

Figure 9.2: List of resources compatible with all data types.

To end with this file, there is another section in which are all search algo-
rithms and tasks included in LiO. This is only for LiO gui in order to make
the lists to chose this objects. As it can be seen in figure 9.3, tasks have a
percentage symbol (%) as prefix and search algorithms have a dollar sign ($).

36

%problems.bitchain.OneMax

%problems.bitchain.SixPeaks

%problems.bitchain.EqualProducts

%problems.bitchain.CheckerBoard

%problems.bitchain.MMDP

%problems.bitchain.Rastrigin

%problems.bitchain.Ackley

%problems.bitchain.Colville

%problems.bitchain.Griewangk

%problems.bitchain.Rosenbrock

%problems.bitchain.Schwefel

%problems.bitchain.Powell

%problems.contchain.OneMax

%problems.contchain.Colville

%problems.contchain.Ackley

%problems.contchain.Griewangk

%problems.contchain.Rastrigin

%problems.contchain.Rosenbrock

%problems.contchain.Schwefel

%problems.contchain.SumCan

%problems.contchain.Powell

%problems.permutation.PermutationExample

%problems.permutation.SymmetricTSP

$lio.search.genetic.CHC

$lio.search.genetic.StdGeneticAlgorithm

$lio.search.local.greedy.GRASP

$lio.search.local.greedy.GreedyConstruction

$lio.search.local.hillclimbing.ILS

$lio.search.local.hillclimbing.MRHillClimbing

$lio.search.local.hillclimbing.MRStochasticHillClimbing

$lio.search.local.simulatedannealing.SA

$lio.search.probabilistic.EDA

$lio.search.probabilistic.PBIL

Figure 9.3: List of tasks and algorithms registered in LiO.

37

Chapter 10

Custom data types

Apart from using data types included in LiO as was described in section 6, this
library has the choice of building new ones quickly and easily. In spite of LiO
will grow up in the future with new algorithms, resources and data types, it’s
very likely that for a particular situation an special data type was needed.

Assuming this need, in this chapter will be seen steps required to solve with
LiO a new task that works with a data type that encoded an string. This task
will be called CustomTask and its aim is find an individual that has the same
value, an string, that those defined in this task. So the fitness function return
the number of characters of the individual that coincide with the same character
in the reference string.

First of all, it is needed have the individual class to represent potential
solutions for this task. This class will be called CustomIndividual and it’s shown
in figure 10.1. Here there is nothing strange, this class has its constructors and
its method getElements as the more important things, and also methods for
updating and querying some position and for cloning itself.

Next, for every data type is needed a class descendant from LiOBounds which
give some useful information about each data type. This class for this individual
will be CustomBounds and is depicted in figure 10.2. In this case, this class is the
simplest because only has a constructor with the individual size. It’s supposed
that this classes are in the custom package.

And finally, it’s necessary to implement the task class. This class is very
simple too, as it can be seen in figure 10.3. CustomTask, as it is called, in its
constructor defines the string that it has to be searched. Obviously, the optimum
value is the lenght of this string and the evaluate method only check every string
positon one by one.

Now, all basic things necessary to use this new individual are ready. It
can be thought to use genetic algorithm seen in section 8.2 or the one seen in
section 8.3.1. This algorithms can deal with any data type, but in both cases

38

public class CustomIndividual extends Individual {

private char[] contenido;

public CustomIndividual(char[] aux) {

for (int i = 0; i < size; i++) {

contenido[i] = aux[i];

}

}

public CustomIndividual() {

contenido = new char[size];

}

public char get(int i) {

return contenido[i];

}

public void set(char letra, int pos) {

contenido[pos] = letra;

}

public char[] getElements() {

return contenido;

}

public String toString() {

return new String(contenido);

}

public Object clone() {

return new CustomIndividual(this.contenido);

}

}

Figure 10.1: Custom individual.

public class CustomBounds extends LiOBounds {

public CustomBounds(int size) {

this.size = size;

}

}

Figure 10.2: Bounds for the custom individual.

39

public class CustomTask extends LiOTask {

private char[] referencia;

public CustomTask() {

String aux = new String("En un lugar de la mancha...");

referencia = aux.toCharArray();

}

public LiOBounds defineIndividuals() {

LiOBounds lbounds = new CustomBounds(referencia.length);

return lbounds;

}

public double optimum() {

return referencia.length;

}

public double evaluate(Individual individual) {

double result = 0;

char[] aux;

aux = ((CustomIndividual) individual).getElements();

for (int i = 0; i < referencia.length; i++)

if (referencia[i] == aux[i])

result = result + 1;

return result;

}

public LiOResourceDefinition getDefinition() {

LiOResourceDefinition def = new LiOResourceDefinition(

"custom.CustomTask", "lio.LiOTask");

def.setKindOfIndividuals("custom.CustomIndividual");

return def;

}

}

Figure 10.3: Task that works with this custom individual.

40

are necessary the generator and mutation operator for this data type. They can
be seen in figures 10.4 and 10.5.

public class CustomGenerator implements Generator, LiODependentResource {

private int size;

public void getTaskInformation(LiOTask task) {

setSize(task.defineIndividuals().getSize());

}

public void setSize(int pSize) {

size = pSize;

}

public Individual[] generate(int nIndividuals) {

CustomIndividual[] newIndividuals = new CustomIndividual[nIndividuals];

char[] aux = new char[size];

for (int i = 0; i < nIndividuals; i++) {

for (int j = 0; j < size; j++)

aux[j] = (char) (Math.random() * 255);

newIndividuals[i] = new CustomIndividual(aux);

}

return newIndividuals;

}

public LiOResourceDefinition getDefinition() {

LiOResourceDefinition def = new LiOResourceDefinition(

"lio.generators.Generator", "custom.CustomGenerator",

"Generates CustomIndividuals randomly.");

def.setKindOfIndividuals("custom.CustomIndividual");

return def;

}

}

Figure 10.4: Random generator for CustomIndividual.

41

public class CustomMutation implements Mutation {

public void mutate(Individual ind, double probability) {

for (int i = 0; i < ind.getSize(); i++) {

if (Math.random() < probability) {

((CustomIndividual) ind).set((char) (Math.random() * 255), i);

}

}

}

public void mutate(Individual individual) {

int pos = (int) (Math.random() * individual.getSize());

((CustomIndividual) individual).set((char) (Math.random() * 255), pos);

}

public LiOResourceDefinition getDefinition() {

LiOResourceDefinition def = new LiOResourceDefinition(

"lio.mutation.Mutation", "custom.CustomMutation",

"Implements a custom example mutation.");

def.setKindOfIndividuals("custom.CustomIndividual");

return def;

}

}

Figure 10.5: Mutation operator for CustomIndividual.

42

Part III

Algorithms in LiO

43

Chapter 11

Introduction

One of the advantages of using Java is the way that software can be documented
by using javadoc functionality. In this sense, the javadoc obtained from the
source code of LiO contains all the information concerning to the resources.
Not only is this information related with the point of view of programming, but
also with the function of each one.

Although the search algorithms are also resources, and thus, they are de-
scribed in the javadoc, in this chapter we briefly describe those that have been
included in the library. In order to do that, we briefly explain the way that each
one of them performs as well as the parameters and resources it needs to fix in
order to run.

44

Chapter 12

Genetic Algorithms

12.1 Standard Genetic Algorithm

The class lio.search.StdGeneticAlgorithm implements the well known standard
genetic algorithm.

The parameters of this search algorithm are:

• populationSize: Size of the population.

• probCrossover: Probability of crossover.

• probMutation: Probability of mutation.

This class needs to instantiate 5 resources. As it is generic, all of them are
declared with the name of the generic interfaces:

• generator: It must be chosen among those which implement the interface
Generator and generates the initial population, therefore, it depends on
the task.

• selector: This object is used to select some individuals from a population
by taking into account their fitness. It deals with individuals, so it doesn’t
depend on the kind of data. Selectors are defined by the interface Selector.

• crossover: This reference must contain the crossover operator, which de-
pends on the task. Crossovers implement the interface Crossover.

• mutation: Points to the mutation operator, which is task dependent and
implements the interface Mutation.

• replacer: Chooses a subset of individuals between two populations in
order to generate a new one.

The main loop of this algorithm is shown in figure 12.1.

45

population <- generate population of size S

while not stopcondition

newpopulation <- select S elements from population

apply_crossover to newPopulation

apply_mutation to newPopulation

population <- select S from elements from population and newpopulation

Figure 12.1: Standard genetic algorithm.

12.2 CHC

The algorithm CHC is implemented in the class lio.search.genetic.CHC. It
works only with binary problems and, opposite to the standard genetic algo-
rithm, most of the resources it uses are previously defined. Thus, this algorithm
always uses a crossover operator called HUX, a binary mutation (BinaryMutation)
and the elitist selection scheme (ElitistSelection).

It only has two parameters:

• populationSize: Size of the population.

• r: Percentage of mutating positions.

And only one resource:

• generator: Generates the initial population. It must implement Generator.

Its pseudo-code can be seen in figure 12.2

46

L = size of the individuals

D = L / 4

population <- generate population of size S

while not stopcondition

newpopulation <- select S elements from population in random order

form S/2 couples

for each couple

if hamming distance is bigger than D

swap half of the bits at random

otherwise

delete the elements

newpopulation <- select S from elements from population and newpopulation

if population=newpopulation

d--

if d<0

for elements except the best one flip r*L positions at random

d = r * (1 - r) * L

Figure 12.2: Pseudo-code for the CHC algorithm

47

Chapter 13

Estimation of Distribution

Algorithms

13.1 Generic EDAs

Estimation of Distribution Algorithms are a family of evolutionary algorithms
characterized for learning a probability model from the best individuals in a
population and sampling the new population from this model.

Although there are many approaches (UMDA, MIMIC, TREE, EBNA, HBOA)
most of them share the main scheme of functioning and they only differ on the
probabilistic model used to learn the features of the population. Thus, they all
are implemented in LiO by one class, lio.search.probabilistic.EDA.

One of the main advantages of EDAs is the few number of parameters they
have to fix. In this case, there is only one:

• populationSize: Size of the population.

Concerning to the resources these are the ones which needs the algorithm to
run:

• generator: Generates the initial population. It must implement Generator
and depends on the kind of data.

• probDistribution: It is the probability distribution learnt from the models
and used to sample the new ones. It is dependent on the kind of data.

• replacer: Chooses a subset of individuals between two populations in
order to generate a new one.

It’s worth remarking again that we can change the EDA we are using by
only changing the probDistribution resource so, the pseudo-code for all EDAs
is the same and it is shown in figure 13.1.

48

population <- generate population of size S

while not stopcondition

learn a probabilistic model from the S/2 best individuals in the population

new population <- sample S elements from the model

population <- select S from elements from population and newpopulation

Figure 13.1: Pseudo-code for a generic EDA

13.2 PBIL

PBIL algorithm is defined only for binary problems. It works slightly different
than rest of EDAs and therefore, it is implemented apart. All this resources
are previously defined so they don’t have to be instantiated. However, this
algorithm requires to fix 5 parameters:

• populationSize: Size of the population.

• learningRate: Learning rate.

• negativeLearningRate: Whether to use or not negative learning and its
rate.

• mutationProbability: Probability of mutation of the probability vector.

• mutationShift: Amount of mutation that affects probability vector.

It’s pseudo-code can be seen in figure 13.2

initialize vector V.

while not stopcondition

population <- generate from V

update V towards best solution with learningrate

update V away the worst solution with negativelearningrate

mutate with probability prob by using mutationshift

Figure 13.2: Pseudo-code for the PBIL algorithm.

49

Chapter 14

Local Search Algorithms

14.1 Multiple Restart Hill Climbing

This algorithm generates several solutions and perform a local search in each
one of them.

There is only a parameter:

• startingPoings: Number of solutions generated.

And two resources:

• generator: Generates the initial population. It must implement Generator
and depends on the kind of data.

• hillClimbing: It is the operator that perform the hill climbing given a
solution. This operator is generic and can be applied to all kind of indi-
viduals. However, one of its resources neighbourhood is used to define the
neighbourhood of a given solution and thus, it depends on its encoding.

The pseudo-code is given in figure

generate s solutions

for each solution

perform a hillclimbing

Figure 14.1: Pseudo-code of the multiple restart hill climbing

50

14.2 Iterated Local Search

This algorithm seems like the previous one, but instead of choosing several
random solutions it only generates one and, when the hillclimbing is done, next
solution is generated as a perturbation of the current one.

Again, the algorithm has got only one parameter:

• startingPoings: Number of solutions generated.

Whereas it has three resources:

• generator: Generates the initial population. It must implement Generator
and depends on the kind of data.

• hillClimbing: It is the operator that perform the hill climbing given a
solution.

• perturbation: This operator takes a solution and makes a perturbation of
it so as to generate another individual.

The algorithm works as it is shown in figure in 14.2.

solution <- generate solution

while not stop condition

solution <- hillclimbing of the solution

solution <- perturbate the obtained solution

Figure 14.2: Pseudo-code of the iterated local search algorithm

14.3 GRASP

This algorithm is different from the rest in the sense that it requires special
information from the task. The Greedy Randomized Adaptive Search Procedure,
GRASP, belongs to the family of greedy algorithms. They don’t part from a
solution, but build iteratively it. For instance, in the TSP problem, a greedy
algorithm would start in one city and would take the nearest city until it com-
pletes a tour.

It becomes necessary for a task to be solved with GRASP offering the mech-
anisms that allow doing it. Therefore, they must extend LiOTask. This is done
by the class LiOGreedyTask. It basically consists on three functions:

51

• generateStartingPoint: That generates a starting point for a solution. In
the TSP it would choose the origin city.

• getExtensionsToSolution: It would generate extensions to the solutions.
For TSP, it would return the nearest solutions.

• isComplete: It determines whether it is a complete solution or not.

Figure 14.3 shows the pseudo-code of the GRASP:

while not stopcondition

solution <- generate solution

solution <- greedyconstruction

solution <- hillclimbing of the solution

Figure 14.3: Pseudo-code of the GRASP algorithm

This algorithm has only one parameter:

• numberOfIterations: Number of solutions generated or iterations.

Whereas these are the resources:

• greedyConstructor: Instantiates the GreedyConstructor resource with the
given task.

• hillClimbing: It is the operator that perform the hill climbing given a
solution. This operator is generic and can be applied to all kind of indi-
viduals. However, one of its resources neighbourhood is used to define the
neighbourhood of a given solution and thus, it depends on its encoding.

14.4 Simulated Annealing

This algorithm does a local search from a single individual, but allow choosing
some “bad solutions” to avoid local optimum prematurely. This strategy is
based on thermodynamic, so some temperature values are used to control how
this bad solutions are selected. At the beginning, a given temperature is setted
an in each iteration this value is decreased to reduce probability of going to
solutions very different that current one. There are four parameters to fix:

• initialTemp: Initial temperature.

• finalTemp: Final temperature.

52

• fatorA: constant value by which temperature is decreased.

• maxIntIter: Number of internal iterations.

And there are two resources, besides:

• generator: Generates the initial solution. It must implement Generator

and depends on the kind of data.

• simulatedAnnealing: Performs the selection of next solution in the cur-
rent individual neighbourhood, using a temperature value as mean to,
stochastically, allow movements towards bad solutions.

solution <- generate solution

currentTemp <- initialTemp

while currentTemp > finalTemp

for 1 to maxIntIter

solution <- select neighbour by simulated annealing with currentTemp

update currentT by factorA

Figure 14.4: Pseudo-code of the Simulated Annealing algorithm

53

Chapter 15

Particle Swarm

Optimization

In this kind of algorithms, each particle represents a solution that moves across
the search space according to the information from both itself and its neirboug-
hood.

Although the algorithm was originally proposed to work with real coded
problems, there are some adaptations to other representations. Thus, despite
for the time being only problems represented by ContChain can be solved with
LiO, the code is open to incorporate the variations.

The psoudocode of a particle swarm algorithm is shown in 15.1

swarm <- generate solutions

while not stop condition

for 1 to num particles

calculate new position of the particle according to the information.

reestructure neighbourhood if necessary

Figure 15.1: Pseudo-code for a Particle Swam Optimization algorithm

The generic algorithm only takes 3 parameters:

• numParticles: Number of particles that compose the swarm.

• neighbourhood: Defines the structure of the neighbourhood of each parti-
cle.

• generator: Generates the particles.

54

The parameter neighbourhood must be a resource implementing Neighbourhood.
It associates, to each particle, the best position reached by another one. This
information is used for the particle to update the velocity vectors. Two neigh-
bourhood structures are currently defined: GlobalNeighbourhood, which makes
all particles using the best position achieved so far, and RingNeighbourhood, that
defines several neighbours for a particle at the beginning of the process and then
incorparates the best position achieved by one of them to it.

In other hand, the particles and their behaviours must be defined. A Particle

always have a reference to the best position reached so far, to some other par-
ticle (on its neighbourhood) and a method to calculate its next point. LiO
implements StdContParticle that represents the velocity with a vector of real
numbers and updates it according with the state of the art techniques.

The generator parameter must be instantiated to some object whose class
implements SwarmGenerator. This objects generate particles of a certain kind.
In LiO, it is implemented StdContParticleGenerator, that generates the kind of
particles described above with the parameters specified.

55

	Introduction to LiO
	I Using LiO as a tool
	The LiO GUI
	The configuration file
	The command line

	II Programming metaheuristics with LiO
	Introduction
	Individuals and data types
	Individuals
	Defining data types: LiOBounds

	Resources and tasks
	Resources
	Dependent resources
	Defining tasks

	Programming metaheuristics
	The class LiOEnv
	Using the LiO classes from the outside
	Programming generic metaheuristics
	An example

	Internal Configuration of LiO
	Custom data types

	III Algorithms in LiO
	Introduction
	Genetic Algorithms
	Standard Genetic Algorithm
	CHC

	Estimation of Distribution Algorithms
	Generic EDAs
	PBIL

	Local Search Algorithms
	Multiple Restart Hill Climbing
	Iterated Local Search
	GRASP
	Simulated Annealing

	Particle Swarm Optimization

