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Abstract

Manchego sheep is the native breed in Castilla-La Mancha (a region of Spain).
Its two main products are Manchego cheese and Manchego lamb, representing more
than 50% of the final animal production in the region. Because of these economical
implication and with the aim of improving Manchego sheep production, a selection
scheme (called ESROM) based on the animal genetic merit was started fifteen years
ago. One of the major points in the selection scheme is the estimation of the breeding
value, and its use in flock replacements. In the ESROM scheme, the breeding value is
estimated by using BLUP animal model, which is a complex method based on relating
different traits by linear equations, and solving the system by simultaneously taking
into account all the available information.

In this paper we study the use of data mining techniques to deal with breeding value
classification. The goal of the paper is far enough of replacing BLUP in breeding value
estimation, on the contrary, our goal is to learn in a supervised way from the results
produced by BLUP, and to use the learned models to provide preliminary information
about the breeding value of an animal. The advantages of using those models is that
few information is required and the estimation can be done as soon as the data (about
a few variables) is ready for a given animal, allowing to take early decisions or to delay
them until a deeper study is carried out.

We start the data mining process identifying a proper data set from the whole
available data. Then we use standard classification techniques combined with feature
subset selection to identify good attribute subsets to be used as predictors. Attribute
selection is done on the basis of filter and wrapper algorithms, and we also proposed
a filter+wrapper algorithms which provide close to wrapper results with a remarkable
smaller computational cost. We also show that the classifiers accuracy can be consid-
erably improved (around a 4% on the average) by using attribute construction. Finally
we discuss about some tasks performed in the ESROM scheme in relation with the
obtained classification models.

Keyworkds: Manchego sheep, selection scheme, breeding value, classification algo-
rithms, data mining, attribute selection, attribute construction.
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1 Introduction

In Castilla-La Mancha (a region of Spain with more than a million and a half citizens who

live in the 79.000 km2 territory) the sheep cattle represents one of the key components in

the regional economy. For an idea, according to a report of 2001 [ITAP, 2001], in Castilla-La

Mancha the ovine production represents 15% of the agricultural production and more than

50% of the final animal production. Although in the region coexist several ovine breeds,

is the native Manchego sheep [Gallego et al., 1994] which best fits to the natural habitat

and to the extreme continental climatology of the region (cold winters, long dry summers,

scarce rainfall and large daily temperature changes), and it is this natural adaptation which

allow them: (1) to exploit by pasture all the resources at their disposal; and (2) to be fertile

during all the year. There are two main final products from Manchego sheep: (1) Manchego

cheese1 and Manchego lamb2. The excellent quality of these products becomes plain by

their consumption figures: Manchego lamb has increases its sales a 34% from 2002 to 2003

and Manchego cheese represents the 44.4% of the cheese commercialized in Spain, and its

exports outside Spain have increased from 0.3% in 1987 to 34% in 2003 (being USA, France

and Germany the main consumers).

However, not all are congratulations for Manchego sheep. Thus, due to the crisis suffered

during the last years by the market of sheep meat, milk production has attained a leading

role in the sheep cattle, and foreign breeds represent a menace to Manchego breed because

in some cases those foreign breeds have a greater milk production (though this figure does

not always means greater net profit). Being aware of this risk, several public organizations

and authorities of the region have opted to the improvement of production data in Manchego

sheep, specially when its potential is tremendous. To achieve this goal the Selection Scheme

for Manchego Sheep (ESROM) was created in 1987.

The ESROM Selection Scheme (SS), which is similar to other selection schemes developed

for other breeds, includes a series of activities whose joint purpose is the genetic improvement

of the breed with respect to the production of milk, and is run by several organizations:

AGRAMA (National Association of Manchego sheep breeders), the Regional Government of

Castilla-La Mancha, CERSYRA (Regional Center for Animal Selection and Reproduction),

1Controlled by a Guarantee of Origin [CRDOQM, 2004] since 1984 which requires that it is make only
from milk obtained of Manchego ewes raised in the region of Castilla-La Mancha (which in 2001 represents
40% of the total ewe milk in Castilla-La Mancha).

2Controlled by a Specific Guarantee [CRDECM, 2004] since 1995



and the Spanish Government (Ministry of Agriculture). An evidence of the SS success is

the 25 extra liters produced at each lactation by the ewes obtained by artificial insemination

inside of the SS.

The SS has four main tools:

1. Genealogical ranking. It is a register of all the ewes in a stock-farm submitted to the

milk controls performed by the SS. It contains (among others) data about the genetic

merit of the animal (shown by the percentile - 10%, 20%, etc, ...- in which the ewe

is ranked with respect to its herd and with respect to the full census of controlled

Manchego ewes).

2. Stud catalog. Males included in the SS having a very high genetic merit (computed

from its daughters genetic merit).

3. Milk production control. A report of the lactation of each ewe containing all the data

referred to the quantity and quality of milk produced by the ewe during the lactation,

normalized to 120 days and 6% of fat (to allow comparisons).

4. Stud market. Market of males obtained by artificial insemination, which follows the

racial standard3 of Manchego sheep and whose mother is above the percentile 70% in

the genealogical ranking. The adquisition of males in the Stud market constitutes an

easy way to improve the genetic merit of a herd for those stock farmers that cannot enter

in the technical part of the ESROM program (artificial insemination and lactational

controls).

As we can realize, the key parameter in the SS is the estimation of animals genetic merit

or Breeding Value (BV), because it is this value, computed by using the data about the

controlled lactations, which allow us to place them in the genealogical ranking and to be

entered (or not) in the stud catalog or market. Besides, the SS encourages stock breeders

to select their flock replacements on the basis of the animal genetic merit. In our case,

the breeding value of an animal is a numeric (real) value which represents the deviation of

the animal with respect to the averaged breeding value of the Manchego ewes born in 1990

(referred to as the base year).

3Described in http://www.agrama.org/prototipo.html (in Spanish)



The estimation of the breeding value4 is done by using the BLUP (Best Linear Unbiased

Predictor) methodology, concretely the animal model [poner referencia] is used which is the

most sophisticated method of BLUP analysis available . BLUP is a contrasted methodology

that evaluates the BV of an animal by attempting to separate out the genetic factors influ-

encing the animal merit from the non-genetic factors like feeding or management. During

the computation, BLUP uses all the available information to carry out the BV estimation:

lactational data about any ewe (dead or alive) which in some moment was controlled, ge-

nealogical information about the animal, its relatives and the rest of animals in its herd,

and the information about all the herds which are under control by the SS. Finally, all this

information is linked by means of equations and is simultaneously analyzed by taking into

account any correlation between the different traits.

Therefore, the estimation of the breeding value by using BLUP is a complex process, that

in the case of our SS is carried out each six months in a specialized center. Furthermore, the

BV of an animal is a dynamic value, because it can change from a measurement to the next

one due to changes in the own animal production data, due to changes in its relatives data,

due to changes in its herd, etc, ...

The goal of this paper is to work on the prediction/classification of the breeding value

inside the ESROM Scheme by using techniques from machine learning [Mitchell, 1997] and

data mining [Fayyad et al., 1996] fields. These techniques are embraced by a broader field,

called artificial intelligence or intelligent systems, whose application to agriculture has gained

interest during the last years [Murase, 2000, Farkas, 2003]. Obviously, our goal it is not to

replace the use of BLUP methodology, but to study the possibilities of predicting the BV

of an animal by using a data-driven approach, which will use (by far) less information than

BLUP and that is simpler and can be used as soon the information for a given animal is

ready, without having to wait for the full cattle six-month evaluation. Furthermore, we

focus our analysis in primipara ewes, because it is after the first birth and its corresponding

lactation when ewes are evaluated for first time, and so, it is of interest to have, as soon

as possible, an approximation of its genetic merit in order to take early decision about its

inclusion or not in the production-line.

To achieve this goal we have structured the paper in eight sections apart from this

introduction. In Section 2 we describe the data sources used in this work as well as the data

4In fact we should use Estimated Breeding Value (EBV), but for the sake of simplicity we maintain the
notation of Breeding Value (BV), although it is clear that we are dealing with estimations all the time.



selection carried out according to our task. Section 3 is devoted to data transformation,

especially to the discretization of the breeding value variable in order to transform the task

from numerical prediction to classification. Classification algorithms used are described in

Section 4, while Section 5 describes the initial classification process carried out. In Section 6

we apply variable selection while in Section 7 attribute construction is used. Finally, Section

8 is devoted to briefly discuss the obtained results and in Section 9 we conclude and outline

future work.

2 Data preparation and selection

After understanding the application domain and identifying the goal of the process, the next

step is to prepare the data. Data preparation [Fayyad et al., 1996] is an important process

(usually one of the most time consuming) which comprises a series of stages as creating a

target data set and cleaning and preprocessing it. This section and the next one deal with

this important topic of a data mining project.

2.1 Data preparation

In a data mining project the source of data is usually a data-warehouse, however AGRAMA

does not have a data-warehouse in its organization. In AGRAMA, the data5 is stored in a

relational data base system, as a set of tables which are linked among them by means of a

set of attributes used as keys (the structure is shown in figure 1). There are six main tables

in the system:

• Animals. This table contains historical data about the animals recorded by the organi-

zation: sex, type of birth, date of birth, stock farm, etc, ... It contains approximately

248000 records.

• Qualifications. This table contains data about the morphological qualification given to

the animals. The more higher the qualification is, the closest is the animal to the racial

standard of Manchego sheep breed.

• Lactations. This table contains a record for each controlled lactation: animal, date,

amount of milk, percentage of fat, etc, ... It contains approximately 390000 records.

5In this work we have use as source data from years 1989 to 2003



• Mammals observations. This table contains data about ewes udders.

• Observations. This table contains general observations about the animal, its stock-farm,

etc, ...

• BV. This table contains data about the breeding value given to an animal: BV, confi-

dence/reliability about the BV estimation, etc, ...

Animals MammalQualif.

BreedingValue

Observations

Qualifications

Lactations

Figure 1: Structure of data tables in AGRAMA

From these tables our first goal is to identify/specify the part of the database to be mined.

That is, we need to obtain a single (flat) table containing those variables (and records) which

could have influence in the determination of the BV. This table can be obtained6 by means

of SQL queries performed against our data table structure by using the animal identification

as primary key, and will constitute our initial dataset or minable view (MV). To obtain the

MV we have to take into account the following questions:

• Variables. Which variables should be included in the MV?. To solve this problem we

have required the help of the technical staff of AGRAMA. The set of selected variables

is listed in table 1.

• Data integration. As we are working with different data sources, some integration prob-

lems arise. As an example, most tables store a record for each animal, but Lactations

table stores a record for each lactation, and given that an animal can have 0, 1 or more

controlled lactations, we have a 1-to-n relation. Therefore, making a join in which Lac-

tations table is involved, will yield a table in which the same animal can be represented

6Since virtual relations are called views in the field of databases, the set of task-relevant data for data
mining is called a minable view [Han and Kamber, 2001]



by several records. To fix this problem, we have summarized the information about

the controlled lactations of an animal by using the following fields:

– NLact. Number of controlled lactations performed to the animal.

– AvLactNorm. Amount of milk produced during a controlled lactation, averaged

over NLact.

– MaxLactNorm. The amount of milk produced in the best controlled lactation to

the animal (the maximum value).

– AvLact120. The same as AvLactNorm but considering only the first 120 days of the

controlled lactation.

– MaxLact120. The same as MaxLactNorm but considering only the first 120 days of

the controlled lactations.

After this process, the new Lactations table only have a record per animal, and thus,

we can obtain our MV containing the variables listed in table 1 by using SQL queries.

Another problem to be considered in data preparation is data cleaning. By data cleaning

we understand the detection (and its treatment) of possible errors in data, outliers and

missing values. In our case we have deal to with the two following situations:

• By inspection we have detected some errors due to data acquisition. Concretely, there

are 169 records with sex=male but which have data about lactations. Obviously, the

value of sex for these records is wrong, being the correct one female.

• As the MV is obtained by SQL queries, a join is carried out between Lactations and

Animals tables. As a consequence, all the animals which do not have any lactation (i.e.,

they do not appear in the lactations table), will have missing values for the lactation

variables (Nlact, AvLactNorm, etc, ...) in the resulting MV. However, we know that the

correct value for these variables is not missing, but 0. By making this substitution,

the number of missing values for these variables decreases from 6% to 0% in Nlact and

from 12% to 6% in the remaining lactaction variables.

2.2 Data Selection

Although we have already performed some kind of data selection by deciding which vari-

ables/attributes should be included in our MV, this task has not still finished.



Table 1: Variable description
Variable Type Missing Description
1. Sex nominal(2) 0% Sex (male,female) of the animal
Data about the BV
2. BVFather numeric 0% BV of animal father
3. ReBVF numeric 0% Confidence on the value assigned to BVFather
4. BVMother numeric 0% BV of animal mother
5. ReBVM numeric 0% Confidence on BVMother value
6. BVMaternalGM numeric 39% BV of animal maternal grand mother
7. ReBVMGM numeric 39% Confidence on BVMaternalGM value
8. BVParentalGM numeric 3% BV of animal parental grand mother
9. ReBVPGM numeric 3% Confidence on BVParentalGM value
10. BVMaternalGF numeric 67% BV of animal maternal grand father
11. ReBVMGF numeric 67% Confidence on BVMaternalGF value
12. BVParentalGF numeric 15% BV of animal parental grand father
13. ReBVPGF numeric 15% Confidence on BVParentalGF value
14. BV numeric 0% BV of the animal. This is the GOAL variable
15. ReBV numeric 0% Confidence on the value assigned to BV
Environmental data
16. TypeOfBirth nominal(6) 0% Number of children in the animal childbirth
17. StockFarm nominal(117) 0% Stock farm to which the animal belong
18. FatherStockFarm nominal(64) 0% Stock farm to which the animal father belong
19. MotherStockFarm nominal(127) 0% Stock farm to which the animal mother belong
Data about mother lactations
20. NLactM numeric 12% Number of controlled lactations to the animal mother
21. AvLactNormM numeric 13% Amount of milk produced during a controlled lactation.

Averaged over the number of controlled lactations.
22. MaxLactNormM numeric 13% Maximum amount of milk produced in the controlled

lactations
23. AvLact120M numeric 13% Amount of milk produced in the first 120 days of a controlled

lactation. Averaged over the number of controlled lactations
24. MaxLact120M numeric 13% Maximum amount of milk produced in the 120 days

controlled lactations
Data about animal lactations
25. NLact numeric 0% Number of controlled lactations to the animal
26. AvLactNorm numeric 6% Same meaning as AvLactNormM
27. MaxLactNorm numeric 6% Same meaning as MaxLactNormM
28. AvLact120 numeric 6% Same meaning as AvLact120M
29. MaxLact120 numeric 6% Same meaning as MaxLact120M



In this section we will try to select the correct set of records in order to accomplish our

data mining task. As our goal is related to the prediction/approximation of the animal BV,

we are interested in the selection of those records which best fit to that goal. Following the

advice of AGRAMA’s experts we have take into account the conditions listed below in order

to select those records:

• As the main goal of the ESROM program is to improve the amount of milk produced by

the animals, we focus our problem in the prediction of the BV only for female animals.

• In order to have an homogeneous sample, AGRAMA’s experts think that the task

should focus in animals with exactly one lactation.

• For all the BV variables (BV, BVFather, BVMother, etc, ...) there is an associated variable

which measures the confidence on such estimation (ReBV, ReBVF, ReBVM, etc, ...). In

order to avoid having a noisy data set, only those records in which we have enough

confidence about the computed BV will be considered. Concretely, the experts require

a confidence greatest or equal than 0.4 in the case of female animals and greatest or

equal than 0.6 in the case of male animals. Thus, we have considered only those records

in which the following expression holds: (ReBV ≥ 0.4) and (ReBVF ≥ 0.6) and (ReBVM ≥

0.4)).

After this process our MV has 3087 records. Because of this record selection, there is

also changes with respect to the variables included in our MV:

• Variable Sex has been removed because it has the same value (female) in all the cases.

• Variable NLact has been removed because it has the same value (1) in all the cases.

• Variables MaxLactNorm and MaxLact120 have been removed because they have the same

value that AvLactNorm and AvLact120 in all the cases.

• As the confidence in the BV of an animal can be known only after computing such

value using BLUP methodology, and our goal is to predict BV, then we have removed

variable ReBV.

Therefore, our new MV has 24 variables. To finish this section, we have to note that

because of the reduction (at the record level) in the MV, there has been also changes with

respect to the number of missing values in some variables. Thus,



- BVMaternalGM and ReBVMGM from 39% to 23%.

- BVParentalGM and ReBVPGM from 3% to 0%.

- BVMaternalGF and ReBVMGF from 67% to 47%.

- BVParentalGF and ReBVPGF from 15% to 3%.

- NLActM from 12% to 1%.

- AvLactNormM, MaxLactNormM, AvLact120M and MaxLact120M from 13% to 2%.

- AvLactNorm and AvLact120 from 14% to 6%.

3 Data Transformation

As we can see in table 1 the BV of an animal is a numerical value, so the task of predicting

it constitutes a regression (or numerical prediction) problem. However, in this paper we are

interested in dealing with this problem as a classification one.

As was mentioned in the introduction, the information provided to the stock breeder

about the BV of an animal is the percentile (10%, 20%, 30%,etc, ...) in which the animal

is classified. In fact, in the ESROM scheme the animal is retained if it is classified in the

percentile 51-60% or higher. Therefore, even a two-class (BV≤50%,BV>50%) classification

task will be of interest in this problem. However, following the instructions of AGRAMA’s

experts, we have proposed two classification tasks:

• First: the BV variable has been discretized in its respective quartiles. That is, we have

discretized BV in four bins of equal frequency (see fig. 2). The class variable is BV4 =

{f1, f2, f3, f4}. From now on we will refer to this problem as the 4-labels one.

• Second: the BV variable has been discretized in five bins of equal frequency (see fig.

2). The class variable is BV5 = {v1, v2, v3, v4, v5}. From now on we will refer to this

problem as the 5-labels one.

Figure 2 shows an histogram of the BV variable and the two discretizations used in this

work. From the point of view of AGRAMA’s experts, classifying an animal by using the

discretizations provided by BV4 and BV5 is enough informative.

Therefore, from now on we have two different data sets:



• mv4.- This data set consists in the MV described in the previous section, but replacing

BV by BV4.

• mv5.- This data set consists in the MV described in the previous section, but replacing

BV by BV5.

-40 -30 -20 -10 0 10 20 30 40 50 60 70

v1 v2 v3 v4 v5

f1 f2 f3 f4

BV4
f1: (-inf-5.405]
f2: (5.405-14.935]
f3: (14.935-24.895]
f4: (24.895-inf)

BV5
v1: (-inf-2.7]
v2: (2.7-11.245]
v3: (11.245-18.615]
v4: (18.615-27.635]
v5: (27.635-inf)

Figure 2: Histogram of BV variable and the two discretizations carried out: BV4={f1, f2, f3,
f4} and BV5={v1, v2, v3, v4}

Apart from the transformation of the BV variable, which means to change from a re-

gression problem to a classification one, we have considered also the discretization of the

remaining numerical variables. The idea is to work with the two versions, that is, the two

datasets described above (mv4 and mv5) and two new datasets (mv4d and mv5d) which cor-

responds to the discretization of the numerical variables in mv4 and mv5. As we are in a

classification problem, we have used a supervised technique to carry out the discretization.

Concretely, we have used a standard method of the literature, as it is the Fayyad and Irani

algorithm [Fayyad and Irani, 1993] which uses MDL and entropy to find the best cut-off

points. A very appreciated feature of this method is that the number of bins has not to be

fixed a priori. After the discretization process the number of bins in the discretized variables

of mv4d goes from 2 to 24 with a mean of 6.1, and in mv5d goes from 2 to 18 with a mean

of 5.9.



4 Classification algorithms

In this section we briefly describe the two (classical) classification algorithms used in this

work: decision trees (C4.5) and Naive Bayes.

4.1 Decision trees (C4.5)

Graphically, in a decision or classification tree the inner nodes represent tests about the

predictive attributes, the leaves are labels of the class variable and each branch descending

from an inner node, asking about attribute Xi corresponds to one of the (possibly discretized)

values for this attribute (see figure 3.b). In order to classify a new instance, the algorithm

starts at the root node, tests the attribute specified by this node and descends by the

appropriate branch to a new node. If this new node is a leaf then its class label is returned

as output, otherwise the test process is repeated.

C4.5 [Quinlan, 1986] is a greedy, recursive, top-down algorithm for the induction of de-

cision trees from data. The algorithm starts at the root node with all the available data,

and selects the best test among the available attributes. This test is placed as root node and

the data set is partitioned following the possible outcomes of the test. Then, the process

is recursively repeated for each partition until a stopping criterion is met. In C4.5 the best

attribute is selected by using information gain. Other advantages of C4.5 are the capabil-

ities of dealing with missing values and discretizing on-line the numerical attributes (see

[Quinlan, 1986] for details).

4.2 Naive Bayes

The Naive Bayes (NB) classifier [Duda and Hart, 1973] is a probabilistic classifier based on

the assumption of conditional independence among the predictive attributes given the class.

Because of this independence assumption, the joint probability P (C,X1, . . . , Xn) factorizes

as:

P (C,X1, . . . , Xn) = P (C)
n∏

i=1

P (Xi|C)

Therefore, the probabilities to be learnt are:

• A marginal probability distribution for the class variable P (C), which stand for the a

priori probability of C.



• A conditional probability distribution for each predictive attribute given the class

P (Xi|C). If Xi is a nominal variable, then a multinomial distribution is used. If

Xi is a numerical variable, then P (Xi|cj) = N(µ, σ), that is, a Normal distribution

learnt for each label cj of the class variable C.

Figure 3.b shows an example of NB classifier induced for our problem, but considering

only three (numerical) predictive variables and a two-labels discretization of the class (BV).

After the NB classifier is induced, the MAP principle is used to classify new instances,

that is, given an instance < x1, . . . , xn > we choose the class label c∗ such that

c∗ = arg maxcj
P (C = cj|X1 = x1, . . . , Xn = xn)

= arg maxcj

P (C=cj)·P (X1=x1,...,Xn=xn|cj)

P (X1=x1,...,Xn=xn)

= arg maxcj
P (C = cj) · P (X1 = x1, . . . , Xn = xn|C = cj)

= arg maxcj
P (C = cj)

∏n
i=1 P (Xi = xi|C = cj)

Despite its simplicity and unrealistic independence assumption, the performance of the

NB classifier is remarkably successful in practice [Langley et al., 1992, Domingos and Pazzani, 1997,

Rish, 2001].

GVMother

GVFather GVFather

GVMother

AvLactNorm

GVFather

GVMother

L

L

L H LH

L

H

GVMother GVFather AvLactNorm

Class

<= 13.9 > 13.9

<= 15.8 > 15.8

<= 2.6
> 2.6

<= 162.9 > 162.9

<= 12.5 > 12.5

> −2.7

<= 25.6 > 25.6

<= −2.7

(a) Decision Tree (b) Naive Bayes

P(AvLactNorm|C=H) = N(178.66,66.53)

P(C=L)= 0.5; P(C=H)= 0.5

P(GVFather|C=L) = N(8.06,15.12)

P(GVFather|C=H) = N(33.28,14.04)

P(GVMother|C=L) = N(3.71,11.07)

P(GVMother|C=H) = N(17.91,12.20)

P(AvLactNorm|C=L) = N(134.21,50−27)

Figure 3: (Fraction of a) Decision tree and Naive Bayes learned for a two labels (Low and
High) classification task of a data set containing only {BVFather, BVMother, AvLactNorm } as
(numerical) predictive attributes.

5 Initial classification process

In this section we describe the initial experiments carried out over the MVs described in

previous sections, and using the two classifiers introduced in Section 4, or more concretely the

implementation of C4.5 (J48) and Naive Bayes provided by WEKA [Witten and Frank, 2000]



(in both cases the default options setting has been used). In order to measure the accuracy of

the classifiers over a given data set we use the well known (stratified) K-fold cross validation

technique (K=10 [Kohavi, 1995]).

Instead of considering all the variables in the MV, we have run the algorithms starting

with a small set of variables, and progressively adding different groups of variables. Con-

cretely, we have carried out the following process (see Table 2):

1. First, we have considered only the BV of both parents as predictive attributes. That

is, BVp = {BVFather, BVMother}.

2. Our second approach has been to consider all the BV variables (BVall) as predictive

attributes, that is, variables 2 to 13 in Table 1. Surprisingly, there is only a slight

improvement in one out the eight cases. Because of this, we maintain this two sets of

variables as different starting points for the remaining process.

3. Our third approach consists into adding environmental variables (see Table 1) to BVp

and BVall. As we can see in Table 2, the results are considerably worse than in the

previous case, specially for the NB algorithm (notice that C4.5 has its own variable

selection procedure).

If we pay attention to the environmental variables (except TypeOfBirth), we can see

that they are nominal variables with a large number of possible outcomes. This type

of variables can introduce a considerably amount of noise in the learning/classification

process because estimating conditional probability tables for them is quite difficult

and require a really (and usually unavailable) large sample. Because of this, we have

considered the possibility of preprocessing (grouping) these variables. To do this, we

have implemented in the Elvira system [Elvira-Consortium, 2002] the KEX method

proposed by Berka and Bruha [Berka and Bruha, 1998]. This method reduces the

number of values for a nominal variable to |C| + 1 labels (or groups), being |C| the

number of values (classes) of the class variable (C). The idea of the method described

in [Berka and Bruha, 1998] is to study the distribution (PD) of the class variable for

each value xi of a given variable X. If the distribution significantly differs from the

uniform (by using a χ2 test) then the value xi is assigned to the group identified by the

class label ci having the largest probability in PD, otherwise, the value xi is assigned

to a group denoted as unknown.



We denote by envg the group of environmental variables after the grouping process.

Replacing env by envg and repeating the classification process, we can see how the

results improve considerably, specially for the NB algorithm. Therefore, from now on,

we will use envg instead of env.

4. Our next step is to add the variables related with lactation data. In this way, we try

by adding only the data about mother lactations, lactM (variables 20 to 24 in Table

1); by adding only the data about animal lactations, lact (variables 25 to 29 in Table

1); or by adding all of them, lactM+lact. As we can see in Table 2, the best results are

obtained when only animal lactations data is used.

Table 2: Initial classification process
4 classes 5 classes

Variables C4.5 C4.5(d) NB NB(d) C4.5 C4.5(d) NB NB(d)
BVp(arents) 72.34 71.79 72.27 70.46 66.18 66.73 66.47 63.59

BVall 70.46 71.36 65.50 62.71 64.17 66.89 58.11 55.17
BVp+env 69.61 71.79 62.26 62.00 63.20 66.73 54.62 53.84
BVall+env 71.49 71.49 61.80 61.19 63.88 66.47 54.42 53.35
BVp+envg 72.47 71.92 69.39 67.15 66.12 66.21 62.78 60.61
BVall+envg 70.52 71.43 64.08 63.04 64.17 66.38 58.08 54.81
BVp+envg+lactM 71.07 71.36 61.81 58.83 63.59 64.63 53.55 51.15
BVall+envg+lactM 68.74 71.82 62.52 62.65 61.91 64.95 54.00 54.52
BVp+envg+lact 75.38 76.39 73.05 70.52 69.42 69.58 64.82 63.46
BVall+envg+lact 74.44 75.10 70.20 66.08 68.74 68.97 62.13 57.60
BVp+envg+lactM+lact 72.01 75.64 61.23 60.48 68.51 69.42 54.55 52.96
BVall+envg+lactM+lact 73.05 75.22 63.04 64.56 66.99 69.00 56.79 57.15
BVall+env+lactM+lact 73.05 75.06 63.04 64.89 66.05 67.74 54.39 55.82
Variables zR zR(d) oR oR(d) zR zR(d) oR oR(d)
BVall+envg+lactM+lact 24.94 24.94 54.49 53.45 19.89 19.89 48.66 47.04
BVall+env+lactM+lact 24.94 24.94 54.49 53.45 19.89 19.89 48.66 47.04

Before to analyze the results obtained, we should realized that our classification problem

has been artificially constructed from a regression one, and that all the classes are equally

distributed. Because of these reasons, we think that the problem can be considered as

difficult and high classification rates should not be expected. In fact, baseline algorithms as

ZeroR (zR), which returns the majority class, or OneR (oR) [Holte, 1993], which uses only

one variable to do the prediction, obtain the accuracy shown in the last two rows of Table 2.

After this reflexion we can proceed to analyze the results. The last row of Table 2 referred

to C4.5 and NB gives us the results obtained when all the variables in the MV are included

as predictive attributes. Given the complexity of the problem, these results are not bad,



specially for the decision tree case, however, they are improved when not all the variables

are included as predictive attributes. Concretely, in most of the cases the best results are

obtained when only BVp+envg+lact are used as predictive attributes, obtaining an accuracy

of 76% in the four labels problem and almost a 70% in the five labels problem. Besides, it is

interesting to point out that decision trees obtain their best result for the discretized MV,

while NB obtains its best results for the non-discretized MV.

Though these results can (in our opinion) be considered as good results, it is clear that

using all the variables as predictive attributes it is not a good idea here. In fact, the previous

process (shown in table 2) can be viewed as a manual variable selection process. Thus, when

only an appropriate subset of variables is used instead of the full set, the algorithms improve

their accuracy, specially NB which does not carry out an implicit variable selection process

as C4.5 does. From this analysis, we can conclude that it is worth to study in a deeper way

the problem of attribute selection, which is the goal of the next section.

6 Feature Subset Selection

Feature (or variable, or attribute) Subset Selection (FSS) is the process of identifying the in-

put variables which are relevant to a particular learning (or data mining) problem [Guyon and Elisseeff, 2003,

Liu and Motoda, 1998]. In our case we are interested in identifying those variables with ma-

jor influence in the prediction of the BV. The goal of FSS can be twice: (1) select the subset of

variables yielding the best classification performance, and (2) identify those variables which

are relevant for a given task.

As has been mentioned, the process in the previous section can be interpreted as a manual

FSS process. In this section we study the application of automatic FSS selection techniques

to our problem, concretely we have considered the following approaches:

• Embedded methods. In this case is the own learning algorithm who carries out the

variable selection during the learning process. An example of this approach are decision

trees.

• Filter methods. These methods use statistical or distance-based measures to evaluate

the merit of a variable or subset of variables. They are fast and independent of the

machine learning algorithm to be used.

• Wrapper methods. They use a machine learning algorithm as part of the selection



process, that is, the merit of a given subset is measured by learning (and evaluating) a

model using only that subset of variables. Of course, these methods are computation-

ally expensive and the obtained subset lack of generality because it is tied to the bias

of the classifier used during the FSS process.

• Filter+Wrapper methods. In this case both approaches are combined in some way.

Embedded FSS Although in section 5 we have used different subsets of variables to build

the different classifiers, when decision trees are induced not all the given variables are used.

Thus, the subsets Sn (original/numerical MV) and Sd (discretized MV) shown in Table 5

contain the variables actually used by C4.5 when the subset BVp+envg+lact is used as input

variables (notice that this is the case in which C4.5 gets the best accuracy). It is worth

noting that C4.5 selects the same subset independently of the number of labels in the class

variable, and that the discretized version (which gets the best results in both cases) needs

only 5 out the 7 variables used for the original (non-discretized) MV.

If we use decision trees as feature subset selectors and take its output (Sn and Sd) as

the input for NB, then we obtain the results shown in the FSS(C4.5) row of Table 4. Thus,

NB improves the best result obtained in the previous section for the discretized MV, and

also improves (by far) the results obtained when the full set of variables in the MV is used.

However, as Sn and Sd are biased by C4.5, we can expect to improve this results by using

different FSS methods.

Filtered FSS Our second approach to FSS it is based on the use of filter criteria in order to

measure the relevancy between each predictive attribute and the class variable. Concretely,

we have used the two following filter measures:

• Mutual Information (MI). The mutual information between two given variables X and

Y can be interpreted as: “the information that Y tells us about X is the reduction in

uncertainty about X due to the knowledge of Y ”. The mutual information between

the class variable (C) and a given attribute X can be computed as:

MI(C,X) = H(C)−H(C|X),

where H denotes the Shannon entropy.



• Symmetrical Uncertainty (SU). This measure evaluates the worth of an attribute (X)

by measuring the symmetrical uncertainty with respect to the class variable (C):

SU(C,X) =
2 · ((H(C)−H(C|X))

H(C) + H(X)
.

Basically it uses mutual information, but it is projected onto the [0, 1] interval by

applying a sort of normalization. In our opinion SU is quite interesting when the

number of states in the involved variables is different.

Table 3 shows the ranking produced by these measures in the four and five labels prob-

lems. In the opinion of AGRAMA experts the ranking provided by SU seems to be more

accurate than the one provided by MI, as an example, it is well known that BVFather and

BVMother are the two variables of major influence in the prediction of BV. Because of this,

in the rest of this work we will use the ranking produced by SU.

In filter FSS, after obtaining the ranking, the first k variables are used as the selected

subset. Of course, the main problem here is how to select k. In our case and due to the

knowledge gained in Section 5, we have decide to use two different values for k:

• k = 6. As lactation data seems to play an important role in breeding value predic-

tion/classification, we have choose a value for k which forces to include a lactation

variable (concretely AvLac120). We will refer to this subset of variables as S6 (Table 3).

• k = 9. Given that both subsets, Sn and Sd, contain variables from envg, we have

extended our variables selected in order to add the best ranked variables belonging to

envg. We will refer to this subset of variables as S9.

From the results (Table 4) we can observe that using S9 instead of S6 only gets (slightly)

better results in one out of the eight cases. However, this situation happens with C4.5 (mv5d)

which makes its own FSS process. With respect to the use of S6, only in one out of the eight

cases we get a better result than when Sn or Sd are used as input, and again this happens

with C4.5 (mv5). On the other hand, NB algorithm degrades its performance specially in

the discretized case, which can be due to the inclusion of redundant variables in the selected

subset. In fact, this is one of the main problems of these FSS methods, two variables can be

separately relevant for the class, but redundant among them.



Table 3: Variable ranking obtained by filter measures
SU (4 classes) MI (4 classes) SU (5 classes) MI (5 classes)

0.24851 BVFather 0.58338 BVFather 0.2503 BVFather 0.63229 BVFather
0.16591 BVMother 0.41607 BVParentalGM 0.15456 BVMother 0.40773 BVParentalGM
0.14649 BVParentalGM 0.3715 BVMother 0.1468 BVParentalGM 0.39301 BVMother
0.11889 BVParentalGF 0.28623 BVParentalGF 0.12136 BVParentalGF 0.31166 BVParentalGF
0.08522 ReBVF 0.19802 ReBVF 0.08474 ReBVF 0.21055 ReBVF
0.08272 AvLac120 0.17608 AvLac120 0.07872 AvLac120 0.18079 AvLac120
0.06235 ReBVPGM 0.15862 ReBVPGM 0.06233 ReBVPGM 0.17372 ReBVPGM
0.05637 ReBVPGF 0.1416 MotherStockFarm 0.05625 ReBVPGF 0.17128 MotherStockFarm
0.05575 AvLAc120M 0.13243 StockFarm 0.05414 AvLAc120M 0.15952 StockFarm
0.05567 AvLacNorm 0.12164 ReBVPGF 0.05058 AvLacNorm 0.13044 ReBVPGF
0.0514 MaxLac120M 0.10773 AvLacNorm 0.04962 MaxLac120M 0.11296 AvLAc120M
0.04425 AvLacNormM 0.10719 AvLAc120M 0.04309 MotherStockFarm 0.10694 AvLacNorm
0.03836 BVMaternalGM 0.10551 MaxLac120M 0.04151 AvLacNormM 0.106 MaxLac120M
0.03778 MaxLacNormM 0.08069 AvLacNormM 0.04108 FatherStockFarm 0.08243 AvLacNormM
0.03713 MotherStockFarm 0.07573 BVMaternalGM 0.04026 StockFarm 0.07897 BVMaternalGM
0.03595 FatherStockFarm 0.07443 MaxLacNormM 0.038 BVMaternalGM 0.07873 MaxLacNormM
0.03484 StockFarm 0.0516 FatherStockFarm 0.03685 MaxLacNormM 0.06557 FatherStockFarm
0.01994 BVMaternalGF 0.03526 BVMaternalGF 0.01941 BVMaternalGF 0.03703 BVMaternalGF
0.00932 ReBVMGF 0.01335 ReBVMGF 0.00885 NLacM 0.01341 ReBVMGF
0.00913 NLacM 0.01213 NLacM 0.00827 ReBVMGF 0.01319 NLacM
0.00472 ReBVM 0.00654 ReBVM 0.00395 TypeOfBirth 0.00728 TypeOfBirth
0.00466 ReBVMGM 0.00545 TypeOfBirth 0 ReBVMGM 0 ReBVMGM
0.00323 TypeOfBirth 0.00503 ReBVMGM 0 ReBVM 0 ReBVM

Filter+Wrapper FSS Several combinations of filter plus wrapper FSS can be found in

the literature. The most common is applied when there is a large number of predictive

attributes, and consists in the selection of a subset of variables by applying a (fast) filter

method, and then a wrapper method is applied over that (smaller) subset. In this work, the

scenario is different because we only have around 30 predictive variables, and so we propose

to apply a different combination of filter and wrapper approaches.

Our idea is to use the filter stage to produce a ranking, but without removing any

variable. Then, that ranking will be used to guide the operation of the wrapper algorithm.

Concretely, the wrapper stage consists in running over the ordering of variables produced

by the filter process and to add a variable to the subset of selected variables only if such

inclusion improves the classifier accuracy. As we are in a wrapper phase, the accuracy is

obtained by launching the learning algorithm (C4.5 or NB) having as input only the current

subset of selected variables. The classical (greedy) stopping criterion for this process is to

finish when adding a new variable does not improve the accuracy. However, proceeding in

this way the process can be stopped because two correlated variables appear together in the

ranking even if any relevant variable appears later in the ranking. Trying to alleviate this

problem, the novelty of our proposal consists in the consideration of a lookahead parameter

k, which allow us to continue the process (discarding the useless variable) if less than k

useless variables have been consecutively discarded. Figure 4 shows the pseudo-code of this

FSS algorithm. Of course, if k = 0 we get the greedy behavior described above, and if k =∞

we consider all the predictive variables as candidate to be included in the selected subset.

We have experimented with the ranking produced by using SU as filter measure, and



Function FW(data, class, classifier, lookahead)

1. Ranking ← compute a ranking of predictive attributes with respect to class by using
a filter measure (i.e. symmetrical uncertainty, mutual information, ...)

2. i← 0; selected← ∅; bestAcc← 0.0; fails← 0

3. While (i ≤ Ranking.size) do

(a) X ← Ranking[i]

(b) accuracy ← getAccuracy(classifier, class, data↓selected ∪ {X})

(c) If (accuracy > bestAcc)
selected← selected ∪ {X}; bestAcc← accuracy; fails← 0

(d) Else If (fails < lookahead) fails← fails + 1

(e) Else break

(f) i← i + 1

4. Return selected

Figure 4: Pseudo-code of function FW

with lookahead = 0, 1, 5 and ∞.

From the results (Table 4 and Table 5) we can conclude that with lookahead equals 0

or 1, the algorithm has a similar behavior, just stopping when only the two first variables

(BVFather and BVMother) have been selected. There are only two exceptions (out of 16) in

which more variables are selected, but in both cases is C4.5 the algorithm used and so, it

is probable that it discards some of them. Even with this small subset of variables, NB

improves its results in all the cases with respect to the filtering FSS process and in half

of the cases with respect to the subset obtained by using C4.5 as feature selector. This

fact remarks the idea of having redundant variables among the subset of (relevant) variables

ranked in the first positions by SU. On the other hand, this is not the case for C4.5, which

obtains better results with the subsets provided by the previous FSS approaches, probably

because it filters those subsets when inducing the trees.

Things are quite different when lookahead is set to 5. In this case a new subset, St

= {BVFather, BVMother, AvLact120}, arises as a very good predictor. That is, by using a

lookahead of 5, the process is able to discards some (possibly relevant) attributes which are

redundant with respect to those already included, but at the same time it continues the

process looking for new relevant (but not redundant) attributes. This subset (St) is selected

in the four cases in which NB is applied and it is complemented with some other variables



when applying C4.5. In all the cases (NB and C4.5) the results obtained when using FW(5)

are better than those obtained so far.

To end with the application of FW as feature selector, we have try with lookahead=∞.

In this way, we are sure to give an opportunity to all7 the variables in the data set, without

a high increase of the complexity (in fact, the number of subset evaluated is linear in the

number of variables). In this case, the results (slightly) improve with respect to lookahead=5,

in four of the eight cases. With respect to the subsets of variables obtained, we can see that

they consist of St complemented with one or two more variables in most of the cases.

To conclude, the FW method presented here has obtained (by far) better results than the

filtering approach or the decision trees based FSS process. On the other hand, the number

of subset evaluated is at most ( lookahead=∞) linear in the number of variables.

Wrapper FSS As described before, the wrapper approach takes advantage of using the

learning algorithm during the FSS process. In this way, this approach (usually) obtains

better subsets than other methods (like filter), but also has a considerably higher cost. In

this work we have use forward FSS based on best first search. Forward subset selection

works by starting with an empty set of variables and adding a variable at each step of the

search. That is, it starts by trying all the subsets containing only a variable and select that

with highest accuracy. Then, it tries all the subsets of cardinality two (which contains the

previously selected variable) and select the one with higher accuracy. This process go on

until a stopping criteria is met (usually, the algorithm stops when the accuracy does not

improve). Best first search increases the described forward subset selection by allowing the

search method to do backtracking. The main disadvantage of this approach is that the cost

grows exponentially with the number of (irrelevant) variables.

In our experiments we have set the number of allowed backtracking levels to five. The

results (Table 4 and Table 5) show that in five out of the eight cases we have (slightly)

improved the results obtained so far. However, when comparing with FW(∞) we observe

that the gain in accuracy obtained by Wrapper is (on the average) less than 0.1%, which

show us that FW(∞) is in fact a quite competitive FSS method. With respect to the subsets

selected by this approach, again they are extensions of St by adding few new variables, that

contain in most cases data about mother lactations (which seems to be quite reasonable)

7If too many variables are included in the MV then some of them can be removed before to apply FW(∞)
by using statistical hypothesis testing based on the well known relation between χ

2 and mutual information.



and confidence measures. With respect to FW(∞) again we obtain that both methods

have a similar behavior. On the other hand, the complexity of the wrapper approach is

considerably higher with respect to FW(∞) because it evaluates (on the average) about

200 subsets, while the number of subsets evaluated by FW(∞) is linear in the number of

variables, so it evaluates exactly 23 subsets over each MV.

Table 4: Accuracy obtained when applying FSS (the superscript makes reference to the
subset of variables listed in Table 5)

4 classes 5 classes
Selection C4.5 C4.5(d) NB NB(d) C4.5 C4.5(d) NB NB(d)
Best until now 75.38 76.39 73.05 70.52 69.42 69.58 66.47 63.59
FSS (C4.5) 75.38n 76.39d 71.66n 71.68d 69.42n 69.58d 65.24n 65.66d

FSS (Filter-1) 75.326 75.576 71.756 65.216 69.916 68.616 66.156 59.546

FSS (Filter-2) 75.259 75.519 70.729 63.829 68.749 68.979 63.469 56.889

FSS (FW(0)) 72.34p 71.79p 72.27p 70.46p 66.31b 66.73p 66.47p 63.59p

FSS (FW(1)) 72.34p 76.48a 72.27p 70.46p 66.31b 66.73p 66.47p 63.59p

FSS (FW(5)) 76.13t 76.48a
78.23

t 75.22t 70.07e 70.39f 71.46t 67.22t

FSS (FW(∞)) 76.55c 76.48a
78.23

t 75.252 70.07d 70.39f
71.60

g
67.38

g

FSS (Wrapper) 76.62
h

76.77
i

78.23
t

75.32
j

70.52
k

71.69
3 70.20l

67.38
g

Table 5: Variables selected by the different algorithms
Id Set
Sn St ∪ {AvLacNorm, StockFarm, TypeOfBirth, MotherStockFarm}
Sd St ∪ {AvLacNorm, StockFarm}
S6 St ∪ {BVParentalGM, BVParentalGF, ReBVF}
S9 St ∪ {BVParentalGM, BVParentalGF, ReBVF, ReBVPGM, MotherStockFarm, StockFarm}
Sp {BVFather, BVMother}
Sa St ∪ {AvLAcNorm,ReBVF,ReBVMGM,BVParentalGF,ReBVPGF,AvLac120M}
Sb {BVFather, BVMother,BVParentalGM}
St {BVFather, BVMother,AvLact120}
Se St ∪ {BVParentalGM,ReBVPGM,AvLact120M}
Sf St ∪ {ReBVF,BVMaternalGF,NLactM,AvLactNormM,AvLact120M}
Sc St ∪ {FatherStockFarm, BVMaternalGM, BVMaternalGF,MaxLactNormM}
S2 St ∪ {ReBVMGM}
Sd St ∪ {FatherStockFarm}
Sg St ∪ {ReBVM, FatherStockFarm}
Sh St ∪ {BVMaternalGM,BVMaternalGF,AvLact120M}
Si St ∪ {BVMaternalGF,AvLact120M}
Sj St ∪ {ReBVMGM,ReBVM}
S3 St ∪ {ReBVM}
Sk St ∪ {ReBVMGF, MaxLactNormM}
Sl St ∪ {AvLactNorm,MotherStockFarm,BVMaternalGF,ReBVMGF,MaxLactNormM,AvLact120M

ReBVF}

7 Attribute Construction

Attribute (or variable or feature) construction is the process of deriving new attributes from

the original ones. The idea [Matheus and Rendell, 1989] is to apply a set of constructive



operators to the existing attributes resulting in the construction of one or more new attributes

more appropriate for the description of the target concept.

Attribute construction can have two different goals [Guyon and Elisseeff, 2003]: achieving

best reconstruction of the data or being more efficient for making predictions. In this work

we are interested in the (supervised) second goal. Although attribute construction pretends

to discover dependences between some attributes and so it is a very domain-specific task,

we focus in a data-driven approach which uses generic attribute construction methods. In

this work we create new features by applying simple arithmetic functions to subsets of

variables. Here, we consider only the numerical attributes included in our MV, and restrict

the selected subsets to pairs of variables, so the number of constructed attributes using a

given function is bounded by O(n2), n being the number of numerical attributes. Concretely,

we have used the operators sum (+) and product (∗) as functions, and given that both

operations are commutative, n2−n
2

features are generated for each one. The choice of these

two operators obey to the fact that they are simple, and summation can be appropriate to

combine attributes measured in similar scales, while product can be appropriate to combine

attributes measured in different scales.

After the attribute construction, n2 − n new features have been added to the MV, n

being 19. Thus, our new MV has 366 variables (the class plus 23 original attributes plus

342 constructed attributes). We have ranked the 365 predictive attributes by using SU as

filter measure and we get that the two first features are: BVFather+BVMother and BVFa-

ther*BVMother. This fact is not surprising at all because two reasons:

• These two attributes were ranked as the two of greater importance with respect to the

class variable (see Table 3), and

• The experts frequently use the pedigree index as predictor, which is computed as BVFather+BVMother
2

.

Therefore, we have identified a good predictor by using the data driven constructive

approach which agrees with the domain experts knowledge. The question now is if more

interesting combinations have been identified. Table 6 shows the ranking of the first 288

variables by using SU as filter measure. As we can see in all of them, one of the two

primary attributes BVFather or BVMother appears in the constructed variable, being in the

top position those yielded by the combination of BVFather with lactation mother data, so it

8We have listed the first variables until the primary variables BVFather and BVMother are included



seems that more interesting combinations have been identified.

Table 6: First ranked variables using SU in the data set including generated features
SU Variable SU Variable
0.43157 BVFather+BVMother 0.21643 BVFather+ReBVPGF
0.33019 BVFather*BVMother 0.21228 BVFather*AvLact120
0.25478 BVFather*AvLactNormM 0.2108 BVFather+BVParentalGM
0.25095 BVFather*MaxLact120M 0.20161 BVFather*BVParentalGM
0.25038 BVFather*AvLact120M 0.20064 BVMother+BVParentalGM
0.25037 BVFather+ReBVM 0.19916 BVFather*AvLactNorm
0.24851 BVFather 0.19514 BVFather*NLactM
0.24758 BVFather+ReBVF 0.19336 BVFather*ReBVPGF
0.24449 BVFather+ReBVPGM 0.18111 BVMother*BVParentalGM
0.24291 BVFather*ReBVF 0.17228 BVFather+BVParentalGF
0.2416 BVFather*MaxLactNormM 0.16983 BVMother*ReBVF
0.24115 BVFather*ReBVM 0.1671 BVMother+ReBVF
0.24055 BVFather+NLactM 0.16617 BVMother+ReBVM
0.23919 BVFather*ReBVPGM 0.16591 BVMother

As the current MV has 365 predictive attributes, and taking into account that 342 come

from an attribute construction process we can be almost sure that many of them will be

irrelevant or redundant with respect to our classification process. Therefore, the attribute

selection process is even more necessary than in our previous experiments, so we have carried

out the same feature subset selection process described in the previous section over our new

(larger) MV. From the results (Table 7) we can draw the following conclusions:

• The accuracy of the classification has been improved considerably with respect to the

results obtained over the MV without constructed attributes. Concretely, by using

FSS-Wrapper, the accuracy has augmented a 3.6% (on the average) for the 4 labels

problem and a 5% (on the average) for the 5 labels problem.

• The number of attributes selected is quite far of the 365 available features, being less

than ten in the best cases. In general, NB needs less attributes than C4.5 and FSS-

Wrapper selects less attributes than FW(∞).

• FSS-Wrapper gets better results than FW(∞) in both criteria: accuracy and number

of required attributes. While the gain in accuracy is (on the average) less than one

point, the number of selected attributes is drastically reduced in some cases. On the

other hand, FSS-Wrapper is by far more complex because it needs to evaluate (on the

average) about 4800 subsets while FSS-FW(∞) is linear in the number of attributes,

that is, it evaluates exactly 365 subsets.

• With respect to the selected attributes, BVFather+BVMother is always selected, in fact,

it is the only feature selected in 13 cases (see Table 7), and is complemented only



by BVFather*BVMother in 8 cases (which improves only slightly the accuracy of the

classification). When more attributes are selected, as is the case of FSS-FW(∞) and

FSS-Wrapper, it seems that the insertion of the constructed attributes allow the clas-

sifiers to adapt better to some areas of the solution space. However, it seems that the

attributes are selected to improve the accuracy, but no semantic interpretation can

be (at least easily) obtained from that selection. As an example, Table 8 shows the

attributed selected in four out of the eight best cases, concretely those containing less

attributes. From it, we can see that there is not a pattern in the selected attributes

(apart of BVFather+BVMother), e.g., AvLacNorm is always used (which agree with our

previous experiments) but combined with different attributes.

Table 7: Results obtained applying FSS over the MV enlarged by attribute construction.
The subscript represents the number of attributes included in the selected subset. For some
subsets we have used a superscript to identify the subset.

4 classes 5 classes
Selection C4.5 C4.5(d) NB NB(d) C4.5 C4.5(d) NB NB(d)
Best until now 76.62 76.77 78.23 75.32 70.52 71.69 71.60 67.38
FSS (FW(0)) 73.671 73.992 73.961 74.212 68.321 69.192 69.681 69.161

FSS (FW(1)) 73.671 73.992 73.961 74.212 68.321 69.192 69.681 69.161

FSS (FW(5)) 76.8014 73.992 73.961 74.212 68.803 72.5610 69.681 69.161

FSS (FW(∞)) 79.2030 80.5018 78.5510 80.2114 73.7626 76.2642 73.8312 74.9912

FSS (Wrapper) 80.00
m
8

81.9018 79.30
y
4

80.21
o
6

75.309 76.508 74.80
r
5

74.808

Table 8: Variables included in some selected subsets.
identifier selected variables
m BVFather+BVMother, BVFather+ReBVMGF, ReBVMGF+BVPArentalGF,

AvLacNorm*AvLac120, BVMaternalGM*BVMaternalGF, ReBVPGM*AvLac120M,
ReBVMGF*ReBVPGF, NLacM*MaxLacNormM

y BVFather+AvLac120, BVFather+BVMother, BVMother+BVMaternalGF,
ReBVM+REBVMGM

o ReBVMGM, AvLac120+ReBVM, BVFather+BVMother,
AvLacNorm*AvLac120, ReBVF*ReBVM, ReBVMGF*NLacM

r AvLac120+BVMother, BVFather+BVMother, ReBVF+REBVMGM,
BVParentalGM+ReBVMGF, AvLac120*ReBVF

8 Discussion

In this section we discuss the results obtained through the process described in the previous

sections. First of all, during the analysis we should take into account the nature of our

problem and the fact that we are dealing with a classification problem which arises by a



transformation process from a prediction task. Because of this, artificially created classes

(frontiers) are likely ill-defined and so very good results are not expected.

From our initial classification process (Section 5) there are some points worthing to be

discussed:

• When all the variables are considered, C4.5 improves (by far) the results obtained by

NB. As C4.5 only uses a subset of the available attributes, this is a clear clue that

variable selection is appropriate in this task.

• During the manual FSS process we realize that most environmental variables represents

a problem because of its cardinality. A cardinality reduction process has been carried

out for these variables by using KEX algorithm, which yields to better classification

results specially for NB algorithm. Apart from this benefit, the output of KEX provided

us with a like-clustering9 of the herds as a function of the breeding value.

• As expected, the best results are obtained using only a subset of the available variables.

The most informative predictors are parents BV but in six of the eight cases the best

results are obtained when using parents breeding value, environmental variables and

animal lactational data.

• The accuracy of the classification is relatively good (76% in the four labels problem

and almost a 70% in the five labels one), especially if we consider the starting point

(OneR and the use of all the variables). The improvement with respect to the starting

point is specially remarkable in the case of NB. On the other hand, in both problems

(four and five labels), the best results are achieved in the discretized case.

Despite the initial results are not bad and we have identified an interesting subset of

relevant variables, we think that a finer FSS can help to improve the results in both directions.

From the process described in Section 6 we remark the following points:

• The filtering process confirm us which variables are more relevant with respect to BV

variable: breeding value variables and lactational data. However, many of them are

redundant when considered together, and so using the filter approach alone is not a

good idea.

9Results are not fully interpretable because many herds fall in the unknown category.



• The filter+wrapper approach proposed in Section 6 identifies a strong predictor subset:

St = {BVFather, BVMother, AvLact120}. In fact, it gives the best results in the four labels

problem and its performance is quite close to the best one in the five labels problem.

Besides, it complexity is considerably smaller than wrapper FSS.

• In the remaining cases the best performance is achieved by using wrapper FSS. In

all the cases the subsets selected are formed by adding to St two or three variables,

related to grand mother breeding value, confidence on breeding values or lactational

data about the animal mother. Only in one out of the eight cases environmental data

is used (FatherStockFarm).

• When using FSS, C4.5 obtains similar results in both cases, discretized and non-

discretized, while NB gets significantly best results in the non-discretized case. We

think that a possible explanation to this fact is the like-normal distribution shape ex-

hibited by most of the variables selected in the winner cases. On the other hand, and

because of the FSS process, now NB and C4.5 have similar performance.

• Finally, one of our goals have been fulfilled, as is the identification of relevant subsets of

variables which yields (in all the cases) better accuracy results than the cases studied

in section 5.

With respect to our data-driven attribute construction process, we have induced new

good predictors from the available attributes. However, it is necessary to carry out a FSS

over the enlarged MV in order to identify interesting subsets. The following remarks worth

in our opinion:

• The key constructed attribute is BVFather+BVMother which has been considered more

relevant than the addition of BVFather and BVMother (see Table 6). This variable has

shown a great classification power (see Table 7), being even slightly better than the

pedigree index used by experts.

• There are other good constructed predictors, many of them combining BVFather with

genetic or lactational data, and it is clear that they play an important role in the clas-

sification process, because the increase achieved in the accuracy (4.3% on the average

in the winner cases).



• In this case wrapper FSS has shown (in general) a superior performance than the FW

approach, with respect to the number of selected variables. With respect to this fact

we should notice that the wrapper method used in this work allow backtracking, while

FW has a greedy behavior and once a variable is included in the selected subset it

cannot be removed.

Below we include the confusion matrices (Tables 9 and 10) of the best cases with respect

to accuracy for the four and five labels problems. As expected, most errors are in the classes

frontiers. We will use this confusion matrices to discuss about using these classifications

with respect to three selection processes carried out in the ESROM scheme:

Table 9: Confusion matrix for the best result obtained (81.9% of accuracy) in the four labels
problem.

classified as
actual f1 f2 f3 f4
f1 (≤ 25%) 667 100 4 1
f2 (25%− 50%) 63 595 107 6
f3 (50%− 75%) 0 114 570 88
f4 (> 75%) 0 4 73 695

Table 10: Confusion matrix for the best result obtained (76.5% of accuracy) in the five labels
problem.

classified as
actual v1 v2 v3 v4 v5
v1 (≤ 20%) 512 98 5 0 1
v2 (20%− 40%) 61 443 104 8 2
v3 (40%− 60%) 1 85 422 105 5
v4 (60%− 80%) 0 3 85 441 88
v5 (> 80%) 0 1 4 70 543

• Inclusion of ewes in the preliminary catalog. When a new herd is considered for its

inclusion in the SS, only those ewes which pass a threshold about morphological quali-

fication, milk production and genetic merit, will be included in a preliminary catalog10.

With respect to breeding value the ewe has to be in the top 50% of the population.

10Only second generation descendants of these preselected ewes will have the opportunity of being included
in the final ESROM catalog.



This task can be directly attacked by using the four labels problem. In fact, we

can collapse the confusion matrix (Table 9) into a two labels problem (GV > 50%),

obtaning the confusion matrix shown in the left part of Table 11. From this confusion

matrix we can see that the accuracy in the classification is 92.35%, which is a high

ratio, even taking into account that the target concept using during the learning stage

was not this binary classification but a four labels one. On the other hand, if we want

to be more prudent (with respect to the animals selected by the classifier) in this task,

we can use the five labels classifier by setting our target to be GV > 60%. In this case

we obtain the (collapsed) confusion matrix shown in the right part of Table 11. The

degree of accuracy (93%) is similar to the previous one (notice that again this not was

the concept target during the learning phase), but now there are 111 of the 121 false

positives which actually belong to v3 class, and so we can expect that many of them

are in the percentile 50%− 60%.

• Selection of ewes as candidate mothers for the stud market. Only ewes with BV greater

or equal to the 70% will be used (by means of artificial insemination) to produce males

for the stud market.

This task can be approached in a prudent way by using the four labels classification,

and setting GV > 75% as our target concept. Left part of Table 12 shows the collapsed

confusion matrix. As we can see the accuracy is really high, 94.43%, and 88 of the 95

false positives belong actually to the f3 class, and so we can expect that many of them

actually are in the 70%− 75% band. Of course, we can be even more prudent, and use

five labels classification with concept target GV > 80%. In this case we get a similar

accuracy (94.46), but the collapsed confusion matrix (right part of Table 12) show us

that 88 of the 96 false positives belong to class v4 and so it is quite likely that they

are in the 70%− 80% decile.

• Selection of ewes as mothers for ewes replacement. When artificial insemination is

used for ewes replacement, the mothers are selected from those being above the 80%

percentile.

Five labels classification can be used to approach this task, it is enough to use GV > 80

as target concept. The confusion matrix is the one shown in Table 12 (right), having

an accuracy of 94.46%, however in this case the figure 96 represents tha actual true



positives.

Table 11: Collapsed confusion matrices for concept targets BV > 50% and BV > 60%.

classified as classified as
actual ≤ 50% > 50% actual ≤ 60% > 60%
≤ 50% 1425 118 ≤ 60% 1731 121
> 50% 118 1426 > 60% 93 1142

Table 12: Collapsed confusion matrices for concept targets BV > 75% and BV > 80%.

classified as classified as
actual ≤ 75% > 75% actual ≤ 80% > 80%
≤ 75% 2220 95 ≤ 80% 2373 96
> 75% 77 695 > 80% 75 543

To finish with this discussion, we would like to remark the fact that using the obtained

classifiers should be considered as a preliminary and fast decision criterion, but finer tools

can be use to tackle with dubious cases. Furthermore, if we want to be more conservative

in our decisions, we can use C4.5 and NB as rankers, and a minimal (probability) threshold

can be set in order to classify an animal with respect to a target concept. Finally, a two-

level classification [Ferri et al., 2004] can be use by training a second classifier using only the

dubious cases for the first one, in this way we think that those cases in the classes frontiers

will be more correctly managed.

9 Concluding remarks

An study of the breeding value classification in Manchego sheep breed has been carried out

in this paper. This task is one of the key points in the Selection Scheme (ESROM) used

to improve the quality and production figures of Manchego sheep. Starting from the data

provided by AGRAMA and following a careful data preparation process we have obtained

a set of minable views (four or five classes and discretized or non-discretized attributes)

which have been used to classify the breeding value by means of two classical standard

algorithms: NB and C4.5. We have shown that feature selection is a key process with a

twofold benefit: (1) identification of small subsets of variables to be used as predictors,

and (2) an improvement in the accuracy of the classification. Furthermore, a data-driven



attribute construction process has been carried out over the numerical attributes included

in the minable view. From this process some interesting attributes have been identified and

also the classification accuracy has been considerably improved. Finally, we have analyzed

the obtained results linking them with possible selection tasks performed inside the ESROM

scheme.

For future work we plan to use more sophisticated bayesian classifiers, because even the

results obtained by NB are good and competitive with those obtained by C4.5, it is clear

that the class-conditional independence assumption is not true in this domain, so we plan to

use Bayesian networks classifiers [Friedman et al., 1997] in order to allow (possible limited)

dependences among the predictive attributes. On the other hand we plan to deal with the

problem as it is in nature, that is, as a numerical prediction one.
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