
University of Castilla-La Mancha

A publication of the

Department of Computer Science

Evaluation of a Subnet Management
Mechanism for InfiniBand Networks

by

Aurelio Bermúdez, Rafael Casado, Francisco J. Quiles,
Timothy M. Pinkston, and José Duato

Technical Report #DIAB-03-02-36 March 2003

Submitted to the 2003 International Conference on Parallel Processing (ICPP-03).
Kaohsiung, Taiwan, ROC.

DEPARTAMENTO DE INFORMÁTICA
ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete – 02071 – Spain

Phone +34.967.599200, Fax +34.967.599224

1

Evaluation of a Subnet Management Mechanism

for InfiniBand Networks

Aurelio Bermúdez1, Rafael Casado1, Francisco J. Quiles1

Timothy M. Pinkston2, and José Duato3

1 Department of Computer Science, Universidad de Castilla-La Mancha,

02071 - Albacete, Spain
{aurelio.bermudez, rafael.casado, francisco.quiles}@uclm.es

2 SMART Interconnects Group, University of Southern California,

Los Angeles, CA 90089-2562, USA
tpink@charity.usc.edu

3 Department of Computer Engineering (DISCA),

Universidad Politécnica de Valencia, 40022 - Valencia, Spain
jduato@gap.upv.es

Abstract. The InfiniBand Architecture is a high-performance network technology for the interconnection of processor

nodes and I/O devices using a point-to-point switch-based fabric. InfiniBand specification defines a basic management

infrastructure that is responsible for subnet configuration, activation, and fault tolerance. Subnet management entities and

functions are described, but the specifications do not impose any particular implementation. This paper presents and

analyzes a complete subnet management mechanism for this architecture. This work allows us to anticipate future directions

to obtain efficient management protocols.

Keywords. System area network, InfiniBand architecture, subnet management, network reconfiguration, performance

evaluation.

1. Introduction

The InfiniBand Architecture (IBA) [5, 6] is a new standard for high-speed I/O and

interprocessor communication, developed by the InfiniBand Trade Association (IBTA). IBA defines a

switch-based network with point-to-point links that supports any topology, including irregular ones, in

order to provide flexibility and incremental expansion capability. Recently, the first commercial IBA-

compliant products have started to appear in the marketplace [10, 13].

2

An IBA network is composed of several subnets interconnected by routers, each subnet

consisting of one or more switches, processing nodes and I/O devices. Subnets are managed in an

autonomous way. There is a subnet management mechanism capable of assimilating any topology

change without external intervention, guaranteeing service availability. However, several important

questions related to this mechanism have not been addressed in the initial IBA specifications. Instead,

they define a general behavior, leaving implementation details to manufacturers and researchers. In

particular, the specification does not detail the way in which the subnet topology must be gathered, or

the exact procedures to compute and distribute the subnet routes. As we will see, a non-optimized

implementation for these key aspects could lead to a degradation in network performance.

Our work focuses on the design of efficient management protocols [4, 12]. In this direction, this

paper presents and evaluates a completely functional prototype of a subnet management protocol which

meets IBA specifications. This approach covers the detection of topology changes, device discovery

and configuration, and computation and distribution of subnet routes. Also, we analyze in detail the

behavior and performance of the proposed mechanism, identifying its potential bottlenecks, and

exploring various ways in which IBA subnet management can be done more efficiently.

The remainder of this paper is organized as follows. This section presents an overview about the

IBA technology and describes the subnet management infrastructure and duties. Section 2 presents our

subnet management protocol, detailing the way we have implemented those open aspects. After that, in

Section 3, the mechanism is evaluated through several simulation results. Finally, some conclusions are

given and future work is proposed in Section 4.

1.1. InfiniBand Architecture Overview

IBA defines a technology for interconnecting processor nodes (hosts) and I/O nodes (I/O units)

to form a system area network. The fabric supports a heterogeneous mix of systems with multiple hosts

3

and I/O units. Each I/O unit can be dedicated to a particular host or shared between multiple hosts. The

architecture is independent of the host operating system and processor platform.

Hosts and I/O units are interconnected using an arbitrary (possibly irregular) switched point-to-

point network, instead of using a shared bus. Processor nodes can include several CPUs and memory

modules, and they use one or several host channel adapters (HCAs) to connect to the switch fabric. I/O

nodes can have any structure, from a simple console to a RAID subsystem. These devices use one or

several target channel adapters (TCAs) to connect to the fabric.

The fabric is structured in subnets connected by means of routers. Each subnet port has a 16-bit

local identifier (LID) assigned by a subnet manager. Switches perform intra-subnet routing using the

packet’s destination LID. A forwarding table in each switch specifies which port forwards the packet.

On the other hand, inter-subnet routing is performed by routers, using global identifiers (GID).

IBA uses copper or optical links. The raw bandwidth of an IBA 1X link is 2.5 Gbps. Data

bandwidth is reduced by 8b/10b encoding to 2.0 Gbps. Therefore, for a full duplex connection, the data

rate is 4 Gbps. Other specified link bandwidths are 10 and 30 Gbps (named 4X and 12X links,

respectively).

The architecture defines a layered hardware protocol (Physical, Link, Network, and Transport

layers) as well as a software layer to manage initialization and communication between devices. Each

link can support multiple transport services for reliability and multiple prioritized virtual

communication channels.

1.2. InfiniBand Subnet Management

IBA defines a small number of management classes. In particular, the subnet management class

specifies methods that enable a subnet manager to discover, configure, and manage the subnet. Other

4

management classes include, for example, subnet administration, device management, and

communication management. In this work, we focus on the subnet management class only.

To guarantee compatibility between different vendor implementations, the specification defines

different subnet management entities, describing their functions and the structure of the control packets

used to exchange information among them. However, as mentioned before, the exact behavior of these

management entities has not been detailed.

Subnet management entities are shown in Fig. 1. There is a subnet manager (SM) in charge of

discovering, configuring, activating, and maintaining the subnet. Through the subnet management

interface (SMI), this entity exchanges control packets with the subnet management agents (SMAs)

present in every subnet device.

Control packets used by the subnet management class are called subnet management packets

(SMPs). Each SMP includes exactly 256 bytes of management information. SMPs are sent using the

unreliable datagram (UD) class of service, contain a key to authenticate the sender, and use exclusively

the management virtual lane (VL15). This VL has priority over data VLs and it is not subject to flow

control.

According to the routing mechanism, there are two types of SMPs: destination (or LID) routed

SMA

SMA

SMASMA

SMA SMA

SMA

SM

SMI

Port

Subnet Manager

Port

SMA

SMI

Fig. 1. Subnet management physical (left) and logical (right) models. The SM can reside in any subnet device (switch,

router, or channel adapter). Each node in the subnet contains a SMA. The SMI is associated to an internal management port

in switches, or a physical port in the rest of devices.

5

SMPs and directed route SMPs. The former are routed by switches in the same way as data packets.

The latter include the sequence of switch output ports to reach the destination. They are primarily used

for discovering the physical connectivity of a subnet before it has been initialized.

The SMP header specifies a method which indicates the operation being performed by the

packet sender (SM/SMA). There are five subnet management methods, whose function will be

described in the next section, namely SubnGet, SubnSet, SubnGetResp, SubnTrap, and

SubnTrapRepress. The management information included in a SMP is called the attribute.

Management attributes are composite structures consisting of components typically representing

hardware registers in channel adapters, switches, or routers. Examples of these attributes are NodeInfo,

PortInfo, LinearForwardingTable, and Notice.

The SMI injects SMPs generated by the SM and SMA into the network. Also, it validates and

delivers incoming SMPs. The destination entity for an arriving SMP depends on its method. In

switches, the SMI implements directed routing, updating packet fields and determining if the current

switch is the destination of the SMP. Note that this processing is applied to the directed route SMP in

each intermediate SMI. As a consequence, the SMP progresses slower than a destination routed SMP.

SMAs are passive management entities. The tasks performed by the SMA include processing

received SMPs, responding to the SM, and configuring local components according to the management

information received. The received SMPs could contain information related to physical ports, such as

the assigned LID, the port state, or the number of operational data VLs. Other SMPs are used to update

the local forwarding table, the service level (SL) to VL mapping table, and the VL arbitration tables. In

switches, the SMA can (optionally) send traps to the SM to notify that the state of a local port has just

changed.

Finally, the SM is the management entity that configures and maintains the subnet operation.

Using SMPs, the SM is able to discover the subnet topology, configure subnet ports and switches, and

6

receive traps from SMAs. There can be multiple SMs, but only one of them can be active. The

mastership handover protocol guarantees that only one SM manages the subnet at any given time. This

SM is the master SM, and the rest of SMs are the standby SMs. Standby SMs monitor the health of the

master SM and, if it goes down, they negotiate among themselves on who will become the successor.

From now on, we denote ‘SM’ to refer to the master SM.

2. Subnet Management Mechanism

Examples of commercial management products can be found in [7, 17]. Also, IBTA technical

working groups are currently defining management aspects not detailed in the IBA specification.

Unfortunately, neither a comprehensive description nor a performance evaluation comparison with

these mechanisms is available at this time.

In the management mechanism presented and analyzed here, SM tasks are sequentially executed

(see Fig. 2). Once the SM becomes the master, it periodically sweeps the subnet searching for topology

changes. After a change is detected, it must obtain the new subnet topology. The topology discovery

process is centralized in the SM, which collects the subnet topology starting from scratch and

performing a propagation-order exploration. Once the exploration finishes, the SM uses the topological

information previously collected to determine the routes through the subnet, and applies the up*/down*

routing algorithm [16]. Finally, in order to prevent deadlock situations during the distribution of

Mastership
Handover

Topology
Discovery

Paths
Computation

Paths
Distribution

Subnet
Topology

Forwarding
Tables

Topology
change

New SM
detected

Master

Fig. 2. Sequence of tasks performed by the SM. The topology discovery task obtains the subnet topology used by the paths

computation task. The paths computation task computes the forwarding tables that the distribution task must deliver to the

switches.

7

forwarding tables, static reconfiguration is assumed. This means that user traffic is stopped while

forwarding tables are being updated. Next, these management tasks are detailed.

2.1. Change Detection

When a topology change occurs, the state of at least one subnet port changes. The SM is in

charge of detecting this change. We have considered both detection mechanisms defined by the IBA

specification: subnet sweeping and traps.

First, the SM is responsible for periodically polling the subnet to gather information about

topology changes. The sweeping rate must be tuned according to parameters such as the subnet size or

the response time required. In particular, the SM establishes a communication with each subnet switch,

examining all its ports and searching for possible changes of state. To this end, it sends a

SubnGet(PortInfo) SMP for each switch port. To speed up this process, the IBA specification allows

the use of only one SMP to detect global changes in the switch. In this case, the SM sends only a

SubnGet(SwitchInfo) SMP for each subnet switch. We have implemented this sweeping method.

In addition to sweeping, a switch SMA may optionally inform to the SM about the change of

state in a local port by sending a SubnTrap(Notice) SMP. Moreover, the SMA could periodically repeat

the trap message until it receives a notification from the SM to stop the trap sending with a

SubnTrapRepress(Notice) SMP.

2.2. Topology Discovery

The first step in assimilating a topology change consists of determining the current subnet

topology. Note that subnet activation is a particular case of topology change. For the shake of

simplicity, our mechanism will always obtain the complete subnet topology, ignoring all the previously

collected information.

8

The IBA specification does not detail any implementation for the subnet discovery algorithm. It

only states that the SM shall send repetitive SMPs to identify all active nodes (and SMs) in the subnet.

In particular, the SM uses SubnGet(PortInfo) SMPs to obtain information about each port in a subnet

node, and SubnGet(NodeInfo) SMPs to determine the nature (switch, router, or channel adapter) of the

device at the other end of an active port. All these SMPs must use directed routing, because switch

forwarding tables have not been distributed yet.

During the discovery process, the SM assigns LIDs to the discovered devices, and configures

other port attributes, sending SubnSet SMPs to the nodes. For example, the SM must notify its own LID

to a new node, in order to allow the traps mechanism to function correctly.

We have implemented a propagation-order exploration [14] to perform a search over the graph

used for modeling the subnet. In this case, exploration SMPs spread throughout the subnet in an

uncontrolled way. The SM sends new SMPs as it receives responses to previous SMPs from the subnet

SMAs. Alternative exploration methods could perform a controlled breadth-first or depth-first search.

To start the discovery process, the SM sends a first SubnGet(NodeInfo) SMP to the local node

(using an empty directed path), and waits for a response. Each time the SM receives a response

(SubnGetResp SMP) from a previous request, it executes a block of code similar to the following:

If attribute_id = NodeInfo then
 If sender_node not visited then
 Assign a LID to sender_node
 For each port in sender_node do
 Send SubnGet(PortInfo) ; (use the same path)
 EndFor
 EndIf
ElseIf attribute_id = PortInfo then
 If management port then ; send the LID to the SMA
 Send SubnSet(PortInfo) ; (use the same path)
 EndIf
 If port_state <> DOWN then ; discover a new device
 Send SubnGet(NodeInfo) ; (add a port to the path)
 EndIf
EndIf

9

If the response to a request SMP is not received after a period of time, the SMP is injected

again. After several reinjections for the same SMP, the SM concludes that the destination is either

disabled or unreachable.

To illustrate this process, Fig. 3 shows a possible sequence of SMPs used by the SM to discover

the topology for the subnet in Fig. 1(left), assuming that all devices are active. Note that the concrete

discovery order is not deterministic, instead, it depends on the ordering of the responses received from

the SMAs. For the shake of clarity, the figure only represents the SubnGet(NodeInfo) SMPs sent by the

SM. Neither the SubnGet(PortInfo)/SubnSet(PortInfo) SMPs nor the SubnGetResp SMPs have been

included.

2.3. Paths Computation

Using the current topological information, the SM must establish the subnet paths that data

packets will use to reach their destination. In other words, it is necessary to compute the set of subnet

SM2

3 45
9

7

8

1

SMA

SMA

SMA
SMA

SMA

SMA SMA

6

Fig. 3. Example of subnet discovery process. Each arrow represents a SubnGet(NodeInfo) SMP sent by the subnet SM, and

the associated number indicates the order in which it is generated. After receiving the response to 1, the SM sends new

SMPs (labeled as 2, 3, and 4) through all its active ports. Similarly, SMPs 5-6 and 7-8-9 are generated after processing the

responses to 3 and 4, respectively. Note that it is not necessary to send new SMPs after receiving the responses to 6 and 9,

because the source devices have been previously visited.

10

forwarding tables. The IBA specification does not impose any specific routing algorithm for the

computation of routing tables.

The up*/down* routing algorithm is a popular deadlock-free algorithm valid for any topology.

This algorithm is based on a cycle-free assignment of direction to the operational links in the network.

For each link, a direction is named up and the opposite one is named down. To avoid deadlocks, legal

routes never use a link in the up direction after having used one in the down direction.

Unfortunately, the up*/down* routing algorithm cannot be used in IBA subnets, because it may

lead to deadlock [9]. It is because the up*/down* routing function takes into account the packet input

port and destination node, and IBA switches only consider the packet destination LID for routing

packets. The reason is that this drastically reduces the forwarding table size.

There are several proposals that allow using the up*/down* routing algorithm to compute the

IBA routing tables [9, 15]. Our mechanism uses a simple (non-optimal) approach. First, using the

above rule we compute all the valid up*/down* routes. After that, we remove those routing alternatives

that could lead to a deadlock situation. The criterion is that if for a given destination there is any output

port in the down direction, we ignore all the routing options that imply the use of a link in the up

direction. Finally, we must choose only one output port for each destination, because IBA routing is

deterministic. The criterion we have used is to select the shortest route.

It is important to note that the SM is also responsible for computing (and configuring) other

switch and channel adapter internal tables, such as the VL arbitration table and the SL-to-VL mapping

table. The computation of these tables is out of the scope of our work, and can be intended, for

example, for providing QoS in IBA networks [1].

11

2.4. Paths Distribution

The SMPs for updating switch forwarding tables are completely defined in the IBA

specification. However, the update order is not detailed. Updating the switch tables in an uncontrolled

way could generate deadlock situations [4]. The reason is that although the new and the previous sets of

subnet routes are deadlock-free, the coexistence of both routing schemes during the distribution process

is not necessarily deadlock-free.

Traditional reconfiguration mechanisms [3, 16] solve this problem by preventing the existence

of data packets in the network during the process. This approach is called static reconfiguration.

Alternatively, in [4, 12] we have proposed two deadlock-free reconfiguration schemes that allow traffic

through the network while the routing tables are being updated. Nevertheless, the subnet management

protocol we have currently developed uses the static approach to distribute the set of subnet forwarding

tables.

The reconfiguration process is controlled by the SM, which must deactivate all subnet ports

before starting the distribution of tables. Once the new forwarding tables have been completely

distributed, the subnet is activated again. SMPs used to perform the two first steps (subnet deactivation

and distribution of tables) must use directed routing. On the other hand, SMPs for the subnet

reactivation phase can use either directed or destination routing.

In particular, the SM sends a SubnSet(PortInfo) SMP to change the state of each subnet port to

INITIALIZE. In this state, the port can only receive and transmit SMPs, discarding all other packets

received or presented to it for transmission [5]. In the same way, to reactivate the service when the

tables have been distributed, the SM sets the state of the subnet ports to ACTIVE. In this state, a port

can transmit and receive all packet types. The delivery of routing tables is performed using either

SubnSet(LinearForwardingTable) SMPs or SubnSet(RandomForwardingTable) SMPs.

12

3. Performance Evaluation

All the performance results presented in this work have been obtained by using simulation

techniques. Before showing and analyzing simulation results, we describe the simulation methodology.

packet
in head

Routing

config
crossbar

pk routed

Subnet Management

Input Channel 1 Output Channel 1Port 0

send SMP

input
ch

update
FT

update
SLtoVLMT

update VLAT

Crossbar

pk mapped

packet in
head

inject
VL

FC
pk

pk
arrival/deliver

rcv1

arbitration_unit

xmt1buffer_rcv1

rcv2 buffer_rcv2 xmt2

rcv3

rcv4

xmt3

xmt4

buffer_rcv3

buffer_rcv4

crossbar

routing_unit

select_input_vl1

select_input_vl2

select_input_vl3

select_input_vl4

SMI SMASMSA

buffer_port0

SLtoVLmapping_unit

VLarbitration_unit1

VLarbitration_unit2

VLarbitration_unit3

VLarbitration_unit4

buffer_xmt1 select_output_vl1

buffer_xmt2

buffer_xmt3

buffer_xmt4

select_output_vl2

select_output_vl3

select_output_vl4

control_state

flow_ctrl_unit1

flow_ctrl_unit2

flow_ctrl_unit3

flow_ctrl_unit4

Fig. 4. Internal structure of a 4-port switch. Each input channel contains a point-to-point receiver, a demultiplexer and a set

of input buffers associated with VLs. The packet routing logic includes the routing unit and the SL to VL mapping unit. The

switching logic (in the center) is composed of a fully demultiplexed crossbar and the arbitration unit. Each output channel

incorporates a set of output buffers, a multiplexer, the flow control unit, and the channel arbitration unit. Finally, at the top

of the figure there are several modules modeling the subnet management entities. These entities are connected to the

crossbar through an internal port.

13

3.1. Simulation Methodology

Our InfiniBand model [2] embodies key physical and link layer features of IBA, allowing the

simulation of various IBA-compliant network designs. To develop it, we have used the OPNET

Modeler [11] simulation software. OPNET is a powerful engineering and research tool for streamlining

the design and performance analysis of communication systems and protocols.

The current IBA model is composed of 1X links, 4-port fully demultiplexed switches, and end

nodes containing a HCA (hosts). As an example, Fig. 4 shows the switch model we have implemented.

See [2] for more details.

For this work, we have used a set of randomly generated irregular topologies, such as the one

shown in Fig. 5(a). We have evaluated subnets with 8, 16, 24, and 32 switches. We assume that there is

a host connected to each switch, if a port is available. Also, not all switch ports are connected. Apart of

irregular topologies, we have analyzed non-arbitrarily generated topologies, as the one shown in Fig.

5(b). This in an example of clos or fat-tree network, widely used in SAN and IPC networks.

switch 0

endnode 1

switch 1

switch 2

switch 3

switch 4

switch 5

switch 6

switch 7

endnode 3

endnode 4

endnode 5

endnode 7

switch 8

switch 9
switch 10

switch 11
endnode 8

endnode 9

endnode 11

endnode 6

switch 12

switch 13

switch 14 switch 15

endnode 13

endnode 15

switch 16

switch 17

switch 18 switch 19

endnode 0

endnode 17

endnode 18

switch 20

switch 21

switch 22

switch 23

endnode 23

endnode 24

endnode 25 endnode 26

endnode 27

switch 24

switch 25 switch 26

switch 27

switch 28

switch 29

switch 30

switch 31

endnode 31

endnode 21

 endnode 0 endnode 3endnode 2endnode 1

switch 0 switch 1

switch 2 switch 3
switch 4

switch 5 switch 6

 (a) (b)

Fig. 5. (a) Irregular subnet topology composed of 32 switches and 21 hosts. (b) Clos topology composed of 7 switches and

4 hosts.

14

In all cases, the amount of operational data VLs per subnet port is 2 (VL0-1). Physical links are

assigned to data VLs using a round robin strategy. The size of the input and output buffers associated to

each VL is 4,096 bytes. Each subnet switch supports a linear forwarding table with 1,024 entries. For

SL mapping, a cyclic assignment of VLs is considered.

The application traffic pattern is very simple. The traffic load is defined by the packet length

and generation rate. The model is completed with the destination and SL distributions. As packet

length, we have considered a maximum transfer unit (MTU) of 256 bytes (the minimum MTU value

allowed by the IBA specification). The generation rate is uniform, and it is expressed in

packets/sec/node. Traffic sources also use a uniform distribution to obtain the packet destination

(among all the active hosts) and SL value (from 0 to 15). The traffic load applied is different for each

subnet topology.

After obtaining subnet performance, we have selected a low load value for the analysis of

switch addition and removal, in order to prevent network saturation during this analysis. For example,

the plot in Fig. 6(a) represents the packet delay versus network throughput obtained for the topology in

1 1.5 2 2.5 3 3.5

x 10
6

0

2

4

6

8

10

12

14

16

18

x 10
−6

Traffic Received (packets/sec)

E
nd

−
to

−
en

d
D

el
ay

 (
se

c)

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.5

1

1.5

2

2.5

x 10
−5

Traffic Received (packets/sec)

E
nd

−
to

−
en

d
D

el
ay

 (
se

c)

 (a) Irregular topology in Fig. 5(a) (b) Clos topology in Fig. 5(b)

Fig. 6. Subnet performance, assuming 2 operational data VLs per port, a packet buffer size of 4,096 bytes, and a packet

MTU of 256 bytes.

15

Fig. 5(a). In this case, we have considered a packet generation rate of 41,250 packets/sec/node,

representing the 25% of the saturation rate observed (165,000 packets/sec/node). Similarly, we have

used the results in Fig. 6(b) to determine the traffic load for the subnet in Fig. 5(b).

For each simulation run, we have programmed the subnet activation at time 10 sec. Traffic

sources in hosts begin to generate packets at time 60 sec. After a transient period, a topology change,

consisting of the addition or removal of an individual switch, is simulated. In all cases, subnet

sweeping rate is set to 0.1 sec, and traps support is disabled in switch SMAs. This experiment has been

repeated for each switch in the subnet. Average values are shown in the figures, except for the plots

related to instantaneous values.

3.2. Simulation Results

In this section, we present several plots to analyze the behavior of the subnet management

mechanism proposed in this paper. We study the time and the amount of control packets required to

assimilate a change. Moreover, we are especially interested in evaluating the effects of the protocol

over application traffic.

Fig. 7 shows the time required by the mechanism to completely assimilate a topology change,

8 16 24 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Subnet Size (switches)

M
an

ag
em

en
t T

im
e

(s
ec

)

Topology Discovery
Paths Computation
Paths Distribution

 8 16 24 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Subnet Size (switches)

M
an

ag
em

en
t T

im
e

(s
ec

)

Topology Discovery
Paths Computation
Paths Distribution

 (a) Switch addition (b) Switch removal

Fig. 7. Time required by the subnet management mechanism to assimilate a change as a function of subnet size.

16

once it has been detected. Fig. 7(a) shows the case for switch addition and Fig. 7(b) presents the results

for switch removal or failure. Note that the represented value is the sum of the time spent by the

successive management tasks (discovery, computation, and distribution).

In general, switch addition requires more time than switch removal. The reason is that subnet

size is larger in case of activation (two additional subnet nodes). Also, the plots clearly show that most

of the time spent by this mechanism is in the path computation process. Results for non-arbitrary

tologies are similar.

Moreover, the fraction of time required to compute the paths increases with subnet size. Fig.

8(a) shows the time required to build the set of subnet forwarding tables, considering two different PC

architectures. This figure clearly shows that the time required to compute the forwarding tables

increases quadratically with subnet size. This result is expected since the size of each table increases

linearly with subnet size. Results also show that the management processor performance does not have

a significant influence on computation time, mostly because path computation involves integer

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

4

Subnet Size (nodes)

C
om

pu
ta

tio
n

T
im

e
(m

se
c)

Pentium III
Pentium IV

 8 16 24 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Subnet Size (switches)

T
ab

le
s

C
ha

ng
e

(%
)

Switch Addition
Switch Removal

 (a) (b)

Fig. 8. (a) Time required to compute the subnet forwarding tables for different subnet sizes. The values have been

empirically obtained by executing our IBA model on both an Intel Pentium III (1.06 GHz) and an Intel Pentium IV (1.5

GHz) microprocessors. (b) Average percentage of table entries that must be updated after a topology change.

17

arithmetic. A possible optimization could be to reduce the complexity of the algorithm used to compute

the forwarding tables, taking advantage of the topological information available before switch

addition/removal. In particular, Fig. 8(b) shows that a very small percentage of forwarding table entries

is affected by a topology change (less than 2%). Therefore, it would be possible to derive an algorithm

that only computes the forwarding tables that suffered changes. We plan to analyze this issue in future

work.

Fig. 9 represents the total number of SMPs required by the subnet mechanism, considering

separately the contribution of each management process. Most of the SMPs correspond to the discovery

task and the distribution of forwarding tables (during the paths distribution process). We have obtained

the same results for non-arbitrary tologies. An implementation that takes advantage of the previous

configuration could considerably reduce the number of SMPs that the SM must send out.

Fig. 10 shows the amount of data packets that are discarded during the change assimilation, as a

function of subnet size. There are two main causes of packet discarding. One is that, according to the

static reconfiguration process, all the packets generated by the hosts during the distribution of

8 16 24 32
0

200

400

600

800

1000

1200

Subnet Size (switches)

M
an

ag
em

en
t S

M
P

s

Topology Discovery
Subnet Deactivation
Tables Distribution
Subnet Activation

 8 16 24 32
0

200

400

600

800

1000

1200

Subnet Size (switches)

M
an

ag
em

en
t S

M
P

s

Topology Discovery
Subnet Deactivation
Tables Distribution
Subnet Activation

 (a) Switch addition (b) Switch removal

Fig. 9. SMPs required by the subnet management mechanism as a function of subnet size. Note that the paths computation

task does not involve the use of SMPs. Once again, switch addition implies more SMPs than removal.

18

forwarding tables must be discarded; the reason is that subnet ports are inactive (they only allow

SMPs). The second cause occurs for the case of switch removal: packets stored in the deactivated

switch buffers and packets that use this switch to reach their destinations (according to the old routing

tables) will be dropped. This source of packet discarding dominates the other, and increases, in general,

with subnet size and traffic load. The limitation of IBA in restricting routes to be deterministic results

in these packets having no other alternative but to be dropped. Discarded packets are not reinjected into

the network. We assume that this function is performed by upper layer mechanisms.

The massive discarding of packets in case of switch removal is inevitable. However, we can

reduce this effect by reducing the time required to discover the subnet topology and, especially, the

time spent on computing the forwarding tables.

Fig. 11 shows the same statistics as Fig. 10, obtained in this case for the clos topology

composed of 7 switches and 4 hosts shown in Fig. 5(b). Results are very similar. However, we can

observe a particular behavior when we simulate the removal of switches 3 (GUID 103) and 4 (GUID

8 16 24 32
0

0.5

1

1.5

2

2.5

3
x 10

5

Subnet Size (switches)

D
is

ca
rd

ed
 P

ac
ke

ts

Before Subnet Deactivation
Inactive Ports

 8 16 24 32
0

0.5

1

1.5

2

2.5

3
x 10

5

Subnet Size (switches)

D
is

ca
rd

ed
 P

ac
ke

ts

Before Subnet Deactivation
Inactive Ports

 (a) Switch addition (b) Switch removal

Fig. 10. Number of packets discarded during the change assimilation as a function of subnet size. The amount of packets

discarded by inactive ports is similar in both cases (switch addition and removal), although it is slightly larger in case of

addition.

19

104). In both cases, the amount of packets that are discarded before the subnet deactivation is very

small. The reason is that subnet routes do not use these switches. Instead, they employ switch 2.

Finally, to analyze the instantaneous behavior of the evaluated management mechanism, Fig. 12

shows some results obtained from an irregular subnet composed of 8 switches and 7 hosts. The

topology change consists of a switch removal (at time 60.1 sec). For all plots, the X-axis represents the

simulation time.

The top plot shows the aggregate amount of SMPs exchanged by the management entities. This

plot allows us to identify the different tasks in the management process, because the two steps in the

plot correspond with the discovery and distribution phases, respectively. Before that, we can appreciate

a long period of time (0.08 seconds approx.) between when the change is produced and when the

sweeping process detects it (and the discovery process begins). Obviously, the detection period could

be reduced using a different sweeping rate, or enabling the use of traps. The second plot shows the

101 102 103 104 105 106
0

1

2

3

4

5

6

7

8

9

10
x 10

4
D

is
ca

rd
ed

 P
ac

ke
ts

Before Subnet Deactivation
Inactive Ports

Switch GUID
101 102 103 104 105 106

0

1

2

3

4

5

6

7

8

9

10
x 10

4

Switch GUID

D
is

ca
rd

ed
 P

ac
ke

ts

Before Subnet Deactivation
Inactive Ports

 (a) Switch addition (b) Switch removal

Fig. 11. Number of packets discarded during the change assimilation, considering the clos topology in Fig. 5(b). Each bar in

the plots corresponds to a single simulation run. Horizontal axis represents the globally unique identifier (GUID) of the

switch that is added/removed from the subnet. The SM is hosted at switch 0. We assume that GUID 101 corresponds to

switch 1, GUID 102 corresponds to switch 2, and so on.

20

latency (from generation) for each received data packet. The third plot represents the aggregate amount

of discarded packets during the simulation. As the change considered is a switch removal, packet

discarding begins exactly at time 60.1 sec. The two last plots show instantaneous network throughput,

through the number of packets sent and received per second in the whole subnet.

During the distribution of forwarding tables, subnet ports are deactivated. As a result,

application traffic delivery is stopped. We can see a gap in the latency and traffic received plots (0.005

seconds approx.) and an additional increment in the number of discarded packets. The final amount of

Fig. 12. Impact of a switch removal (or failure) on application traffic, for a subnet with 8 switches and 7 hosts. Packet

generation rate is 300,000 packets/sec/node. The box in upper left-hand corner shows a magnification of the SMPs

corresponding to the distribution process, allowing us to identify the three steps of the process (subnet deactivation ,

tables distribution , and subnet reactivation).

21

discarded packets exceeds 75,000 packets. These negative effects (lack of service and packet

discarding due to inactive ports) could be reduced by the utilization of dynamic reconfiguration

techniques as presented in [4, 12] and/or reducing the amount of information to distribute after the

topology change.

4. Conclusions and Future Work

This paper describes a whole functional prototype of subnet management protocol. It has

required the previous definition of many design issues not covered by the IBA specifications. The

proposed subnet manager is able to detect topology changes and to configure subnet devices according

to the new topology in an autonomous and deadlock-free way. We have modeled and analyzed our

design using OPNET. Instead of implementation over real components, simulation provides researches

a more flexible and controlled environment to develop novelty proposals.

The obtained results clearly state that the main bottleneck of this management mechanism is the

forwarding tables computation process. In particular, a sequential computation of forwarding tables is

too slow. There are several ways to speed up this process. One of them is the addition of a pre-

processing step to compare old and new network graphs, extracting only those routes that are likely to

change, and computing new forwarding tables for only those. Obviously, the route selection process

must be faster than the forwarding tables computation process. Other possibility is performing a

distributed computation of forwarding tables. The IBA specifications allows a distributed

implementation of the SM, instead of a centralized one. In this case, several replications of this entity

may provide forwarding tables to their neighboring nodes in parallel. The third idea is to overlap in

time the discovery, FT computation and distribution processes, partially shadowing the overhead of the

second one. Apart of FT computation, we are considering the improvement of the other tasks

performed by the SM. Related to the discovery process, we plan to provide the directed routed SMPs

22

with a initial destination routed segment, reducing the overhead due to the SMI interface. Another

possibility is to explore only the region that has changed (as in the skyline approach [8]) instead of the

entire topology. On the other hand, IBA specifications states a mechanism to support automatic path

migration. In this process, a channel adapter signals another CA to migrate the connection they

establish to the predefined alternate path. The application of this mechanism can sensibly reduce packet

discarding during the assimilation of a topology change. As future work, we plan to include and

evaluate these ideas in our management mechanism.

References

1. Alfaro, F. J., Sánchez, J. L., Duato, J., Das, C. R.: A strategy to compute the InfiniBand

arbitration tables. In Proc. 2002 International Parallel and Distributed Processing Symposium. Ft.

Lauderdale, Florida (USA), April 2002

2. Bermúdez, A., Casado, R., Quiles, F. J., Pinkston, T. M., Duato, J.: Modeling InfiniBand with

OPNET. In Proc. 2nd Annual Workshop on Novel Uses of System Area Networks. Anaheim, CA

(USA), February 2003

3. Boden, N. J., Cohen, D., Felderman, R. E., Kuawik, A. E., Seitz, C. L., Seizovic, J. N., Su, W.:

Myrinet: a gigabit per second LAN, IEEE Micro, vol. 15, no. 1, pp. 29-36, February 1995

4. Casado, R., Bermúdez, A., Quiles, F. J., Sánchez, J. L., Duato, J.: A protocol for deadlock-free

dynamic reconfiguration in high-speed local area networks. IEEE Transactions on Parallel and

Distributed Systems, vol. 12, no. 2, pp. 115-132, February 2001

5. InfiniBand Architecture Specification (1.0.a), June 2001, InfiniBand Trade Association.

http://www.infinibandta.com/

6. Futral, W. T.: InfiniBand Architecture. Development and Deployment, Intel Press, August 2001

7. Lane15 Software, Inc. Austin, TX (USA). http://www.lane15.com/

23

8. Lysne, O., Duato, J.: Fast dynamic reconfiguration in irregular networks. In Proc. 2000

International Conference on Parallel Processing, August 2000

9. López, P., Flich, J., Duato, J.: Deadlock-free routing in InfiniBandTM through destination

renaming. In Proc. 2001 International Conference on Parallel Processing, September 2001

10. Mellanox Technologies. Santa Clara, CA (USA). http://www.mellanox.com/

11. OPNET Technologies, Inc. http://www.opnet.com/

12. Pinkston, T. M., Zafar, B., Duato, J.: A method for applying Double Scheme dynamic

reconfiguration over InfiniBand. USC Technical Report, March 2002

13. RedSwitch, Inc. Milpitas, CA (USA). http://www.redswitch.com/

14. Rodeheffer, T. L., Schroeder, M. D.: Automatic reconfiguration in Autonet, SRC Research

Report 77 of the ACM Symposium on Operating Systems Principles, October 1991

15. Sancho, J. C., Robles, A., Duato, J.: Effective strategy to compute forwarding tables for

InfiniBand networks. In Proc. 2001 International Conference on Parallel Processing, September

2001

16. Schroeder, M. D., Birrell, A. D., Burrows, M., Murray, H., Needham, R. M., Rodeheffer, T. L.,

Satterthwate, E. H., Thacker, C. P.: Autonet: a high-speed, self-configuring local area net-work

using point-to-point links. IEEE Journal on Selected Areas in Communications, vol. 9, no. 8,

October 1991

17. VIEO, Inc. Austin, TX (USA). http://www.vieo.com/

